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6 billion images

140 billion images
6 billion added monthly

1 billion images 
served daily

72 hours uploaded 
every minute

90% of net traffic will be visual!

3.5 trillion 
photographs



Too Big for Humans

Digital Dark Matter

[Perona 2010]



Big issues

• What is out there on the Internet? How do we 
get it? What can we do with it?

• How do we compute distances between 
images?



Subject-specific Data

Photos of Coliseum

Portraits of Bill Clinton



Much of Captured World is “generic”



Generic Data

pedestriansfaces 

street scenes Food plates



https://www.youtube.com/watch?v=ZTpqd3Fvaq8

https://www.youtube.com/watch?v=ZTpqd3Fvaq8


The Internet as a Data Source

• Social Networking Sites (e.g. Facebook, 
MySpace)

• Image Search Engines (e.g. Google, Bing)
• Photo Sharing Sites (e.g. Flickr, Picasa, 

Panoramio, photo.net, dpchallenge.com)
• Computer Vision Databases (e.g. CalTech 256, 

PASCAL VOC, LabelMe, Tiny Images, image-
net.org, ESP game, Squigl, Matchin)



Is Generic Data useful?

A motivating example…



[Hays and Efros. Scene Completion Using Millions of Photographs. 
SIGGRAPH 2007 and CACM October 2008.]





Diffusion Result



Efros and Leung result





Scene Matching for 
Image Completion



Scene Completion Result



The Algorithm



Scene Matching



Scene Descriptor



Scene Descriptor

Scene Gist Descriptor 
(Oliva and Torralba 2001)



Scene Descriptor

+

Scene Gist Descriptor 
(Oliva and Torralba 2001)



2 Million Flickr Images



… 200 total



Context Matching



Graph cut + Poisson blending



Result Ranking

We assign each of the 200 results a score 
which is the sum of:

The scene matching distance

The context matching distance 
(color + texture)

The graph cut cost

















… 200 scene matches















Why does it work?





Nearest neighbors from a
collection of 20 thousand images



Nearest neighbors from a
collection of 2 million images



“Unreasonable Effectiveness of Data”
• Parts of our world can be explained by 

elegant mathematics
– physics, chemistry, astronomy, etc.

• But much cannot
– psychology, economics, genetics, etc.

• Enter The Data!
– Great advances in several fields:

• e.g. speech recognition, machine translation

• Case study: Google

[Halevy, Norvig, Pereira 2009]



• A.I. for the postmodern world:
– all questions have already been 

answered…many times, in many ways
– Google is dumb, the “intelligence” is in the data

http://www.google.com/logos/Logo_60blk.gif
http://www.google.com/logos/Logo_60blk.gif


How about visual data?
• text is simple: 

– clean, segmented, compact, 1D
• Visual data is much harder:

– Noisy, unsegmented, high entropy, 2D/3D

Quick Overview
Comparing Images
Uses of Visual Data 

The Dangers of Data



Distance Metrics

-

-

-

=  Euclidian distance of 5 units

= Grayvalue distance of 50 values

= ?

x

y

x

y



SSD says these are not similar

?



Gist of a scene

• Need a full image descriptor, to capture the 
context

• But still want it to be not too high-dimentional 
(else nothing will look similar)



Make them tiny!

?



Tiny Images

• 80 million tiny images: a large dataset for non-
parametric object and scene recognition 
Antonio Torralba, Rob Fergus and William T. 
Freeman. PAMI 2008.



Tiny Images pack a punch!
4x4 8x8 16x16 32x32 64x64





Image Segmentation (by humans)



Human Scene Recognition



Tiny Images Project Page

http://groups.csail.mit.edu/vision/TinyImages/



Scenes are unique



But not all scenes are so original



But not all scenes are so original



Lots 

Of 

Images

A. Torralba, R. Fergus, W.T.Freeman. PAMI 2008



Lots 

Of 

Images

A. Torralba, R. Fergus, W.T.Freeman. PAMI 2008



Lots 

Of 

Images



Automatic Colorization Result

Grayscale input High resolution

Colorization of input using average

A. Torralba, R. Fergus, W.T.Freeman. 2008



Automatic Orientation

• Many images have 
ambiguous orientation

• Look at top 25% 
by confidence:

• Examples of high and low confidence 
images:



Automatic Orientation Examples

A. Torralba, R. Fergus, W.T.Freeman. 2008





Tiny Images Discussion

• Why SSD?
• Can we build a better image descriptor?



Space Shuttle 
Cargo Bay

Image Representations: Histograms

global histogram
• Represent distribution of features

• Color, texture, depth, …

Images from Dave Kauchak



Image Representations: Histograms

Joint histogram
• Requires lots of data
• Loss of resolution to 

avoid empty bins

Images from Dave Kauchak

Marginal histogram
• Requires independent features
• More data/bin than 

joint histogram



Space Shuttle 
Cargo Bay

Image Representations: Histograms

Adaptive binning
• Better data/bin distribution, fewer empty bins
• Can adapt available resolution to relative feature importance

Images from Dave Kauchak



Gist Scene Descriptor

Hays and Efros, SIGGRAPH 2007



Gist Scene Descriptor

Gist scene descriptor 
(Oliva and Torralba 2001)

Hays and Efros, SIGGRAPH 2007



Gist Scene Descriptor

Gist scene descriptor 
(Oliva and Torralba 2001)

Hays and Efros, SIGGRAPH 2007



Recap: Using lots of data!

Input 
Image

Images

Associated 
Info

Huge Dataset

Info from 
Most Similar 

Images

image
matching

Trick: If you have enough images, the dataset will contain 
very similar images that you can find with simple matching 

methods. 



Label Transfer

Label Transfer

Tags: Sky, Water, Beach, Sunny, …
Time: 1pm, August, 2006, …
Location: Italy, Greece, Hawaii …
Photographer: Flickrbug21, Traveller2



im2gps (Hays & Efros, CVPR 2008)

6 million geo-tagged Flickr images



How much can an image tell about its 
geographic location?







Im2gps



Example Scene Matches



Voting Scheme



im2gps























Data-driven categories



*
*

*
*

* *
*



Elevation gradient = 
112 m / km

*
*

*
*

* *
*



Elevation gradient magnitude ranking





Population density ranking





Barren or sparsely populated



Urban and built up



Snow and Ice



Savannah



Water



But surely the brain can’t remember 
this much!?



What’s the Capacity of Visual Long Term Memory?

“Basically, my recollection is that we just 
separated the pictures into distinct thematic 
categories: e.g. cars, animals, single-
person, 2-people, plants, etc.) Only a few 
slides were selected which fell into each 
category, and they were visually distinct.”

According to Standing

Standing (1973)

10,000 images

83% Recognition

What we know… What we don’t know…

Sparse Details

Dogs 
Playing Cards

“Gist” Only Highly Detailed

… people can 
remember thousands 

of images

… what people are remembering 
for each item?

Slide by Aude Oliva



Massive Memory I: Methods

... ......

Showed 14 observers 2500 categorically unique objects

1 at a time, 3 seconds each

800 ms blank between items

Study session lasted about 5.5 hours

Repeat Detection task to maintain focus

1-back

Followed by 300 2-alternative forced choice tests

1024-back

Slide by Aude Oliva



Completely
different objects...

Different exemplars
of the same kind of object...

Different states of
the same object...

Massive Memory Experiment I
A stream of objects will be presented on the 

screen for 
~ 3 second each.

Your primary task: 

Remember them ALL!

afterwards you will be tested with…



Your other task: Detect exact repeats 
anywhere in the stream

Massive Memory Experiment I



Ready?

(Seriously, get ready to clap. The images go by fast…)









<clap!>

























<clap!>













10 Minutes Later...

















<clap!>









<clap!>









30 Minutes Later...

























1 Hour Later...





















<clap!>









2 Hours Later...









<clap!>





















4 Hours Later...





















<clap!>









5:30 Hours Later...





Which one did you see?

(go ahead and shout out your answer)



-A- -B-



-A- -B-



-A- -B-



Examples of State memory test

All stimuli available at: cvcl.mit.edu/MM



Visual Cognition
Expert Predictions

92%

Recognition Memory Results

Replication of Standing 
(1973)



Visual Cognition
Expert Predictions

92%

Recognition Memory Results



92% 88% 87%

Recognition Memory Results

Brady, et al. (2008), PNAS



Using Data for Image Creation…



Michel Gondry, Je Danse la Mia

https://www.youtube.com/watch?v=7ceNf9qJjgc

http://www.youtube.com/watch?v=sxOyvif764E


Scene matching with camera transformations



Image representation

Color layout 

GIST                                      
[Oliva and Torralba’01]

Original image



3. Find a match to fill 
the missing pixels

Scene matching with camera view transformations: 
Translation

1. Move camera

2. View from the 
virtual camera

4. Locally align images

5. Find a seam

6. Blend in the gradient domain



4. Stitched rotation

Scene matching with camera view transformations: 
Camera rotation

1. Rotate camera

2. View from the 
virtual camera

3. Find a match to fill-in 
the missing pixels

5. Display on a cylinder



Scene matching with camera view transformations: 
Forward motion

1. Move camera

2. View from the 
virtual camera

3. Find a match to 
replace pixels



Navigate the virtual space using intuitive motion controls

Tour from a single image



Video

http://www.youtube.com/watch?v=E0rboU10rPo

http://www.youtube.com/watch?v=E0rboU10rPo


Semantic Photo Synthesis

M. Johnson, G. Brostow, J. Shotton, O. A. c, and R. Cipolla, “Semantic Photo Synthesis,” 
Computer Graphics Forum Journal (Eurographics 2006), vol. 25, no. 3, 2006.

Image 
description

Images

Associated 
Info

Huge Dataset

Image 
Content from 

Similar 
Images

image
matching



Johnson, Brostow, Shotton, Arandjelovic, Kwatra, and Cipolla.  
Eurographics 2006.

Semantic Photo Synthesis [EG’06]



1 2

3 4

Semantic Photo Synthesis



Photo Clip Art

J.-F. Lalonde, D. Hoiem, A. A. Efros, C. Rother, J. Winn, and A. Criminisi, “Photo Clip Art,” 
ACM Transactions on Graphics (SIGGRAPH 2007), vol. 26, no. 3, Aug. 2007.

Real 
image!

Images

Associated 
Info

Huge Dataset

Photographic 
“Objects” 

from similar 
images

image
matching



Photo Clip Art [SG’07]
Inserting a single object -- still very hard!

object size, orientation
scene illumination

Lalonde et al, SIGGRAPH 2007 



Photo Clip Art [SG’07]
Use database to find well-fitting object

Lalonde et al, SIGGRAPH 2007 



Geometry is not enough



Illumination context

Database 
image

Environment map rough approximation

Exact environment map is impossible
Approximations [Khan et al., ‘06]



Illumination context
Database image P(pixel|class) CIE L*a*b* histograms

Automatic Photo Popup
Hoiem et al., SIGGRAPH ’05



Illumination nearest-neighbors



Street accident



Bridge



Painting



Alley



Failure cases

Shadow transfer

Porous objects



Failure cases



CG2Real

Fake 
image!

Images

Associated 
Info

Huge Dataset

Textures from 
Similar 
Images

image
matching

M. K. Johnson, K. Dale, S. Avidan, H. Pfister, W. T. Freeman, and W. Matusik, “CG2Real: Improving the realism of computer 
generated images using a large collection of photographs,” IEEE Transactions on Visualization and Computer Graphics, 2010.



CG2Real

M. K. Johnson, K. Dale, S. Avidan, H. Pfister, W. T. Freeman, and W. Matusik, “CG2Real: Improving the realism of computer 
generated images using a large collection of photographs,” IEEE Transactions on Visualization and Computer Graphics, 2010.



ShadowDraw

Bad 
sketch!

Images

Associated 
Info

Huge Dataset

Contours 
from Similar 

Images

image
matching



ShadowDraw

http://www.youtube.com/watch?v=zh_-HUdQwow

http://www.youtube.com/watch?v=zh_-HUdQwow


Explore Visual Data



AverageExplorer

http://www.youtube.com/watch?v=1QgL_aPPCpM

http://www.youtube.com/watch?v=1QgL_aPPCpM


The Dangers of Data



Bias
• Internet is a tremendous repository of visual 

data (Flickr, YouTube, Picassa, etc)
• But it’s not random samples of visual world
• Many sources of bias:

– Sampling bias

– Photographer bias

– Social bias



Flickr Paris



Real Paris



Real Notre Dame



Sampling Bias
• People like to take pictures on vacation



Sampling Bias

People like to take pictures on vacation



Photographer Bias
• People want their pictures to be recognizable 

and/or interesting

vs.



Photographer Bias
• People follow photographic conventions

vs.



Social Bias

Mildred and Lisa
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Mildred
Lisa
Nora
Peyton
Linda

Source: U.S. Social Security 
Administration

Gallagher et al CVPR 2008



Social Bias

Gallagher et al CVPR 2008

Gallagher et al, CVPR 2009



Reducing / Changing Bias

• Autonomous capture methods can reduce / 
change bias 
– But it won’t go away completely

• Sometimes you can just pick your data to suit 
your problem, but not always…

Satellite
google.com

Street side
Google StreetView

Webcams
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