Visual Data on the Internet

With slides from James Hays, Antonio Torralba, and Frederic Heger

Cassandra Jones: https://youtu.be/5H7WrIBrDRg?t=161

CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2018

facebook

140 billion images 6 billion added monthly

72 hours uploaded every minute

• the simple image sharer

6 billion images

1 billion images served daily

3.5 trillion photographs

90% of net traffic will be visual!

[Pe

Big issues

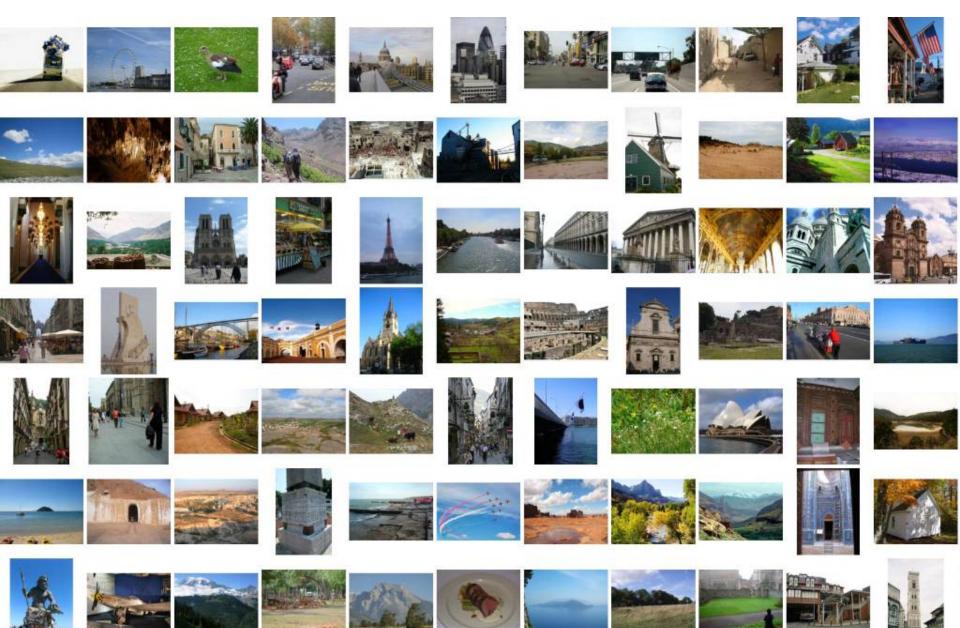
- What is out there on the Internet? How do we get it? What can we do with it?
- How do we compute distances between images?

Subject-specific Data

Photos of Coliseum

Portraits of Bill Clinton

Much of Captured World is "generic"



Generic Data

Food plates

street scenes

pedestrians

https://www.youtube.com/watch?v=ZTpqd3Fvaq8

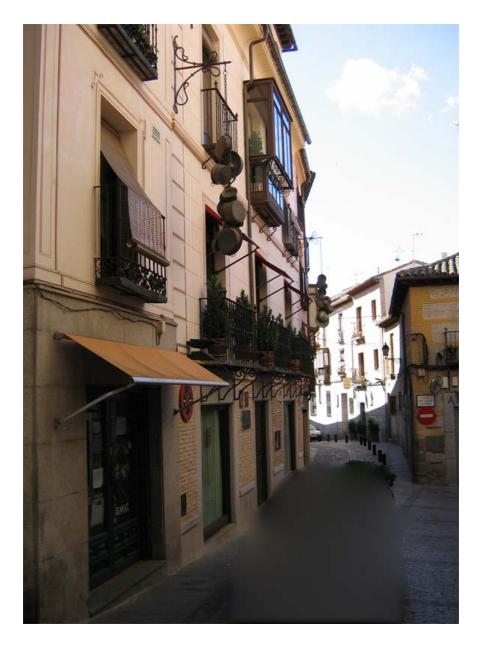
The Internet as a Data Source

- Social Networking Sites (e.g. Facebook, MySpace)
- Image Search Engines (e.g. Google, Bing)
- Photo Sharing Sites (e.g. Flickr, Picasa, Panoramio, photo.net, dpchallenge.com)
- Computer Vision Databases (e.g. CalTech 256, PASCAL VOC, LabelMe, Tiny Images, imagenet.org, ESP game, Squigl, Matchin)

Is Generic Data useful?

A motivating example...

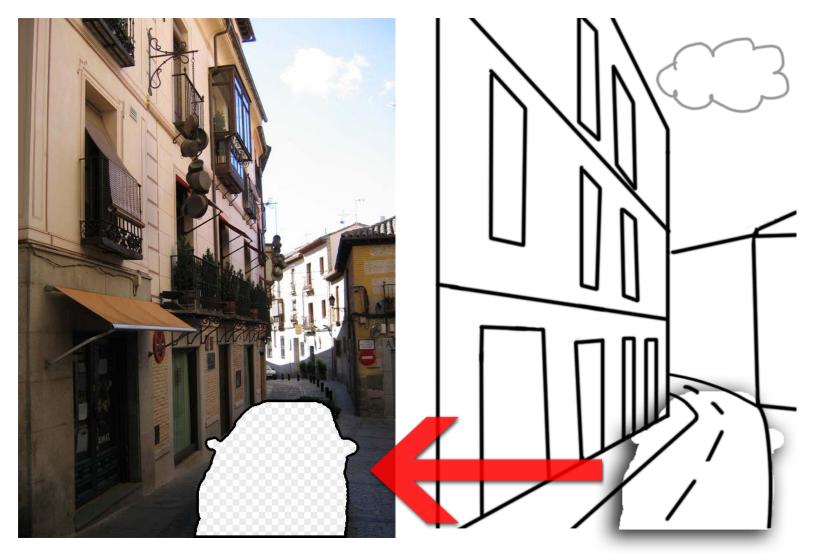
[Hays and Efros. Scene Completion Using Millions of Photographs. SIGGRAPH 2007 and CACM October 2008.]

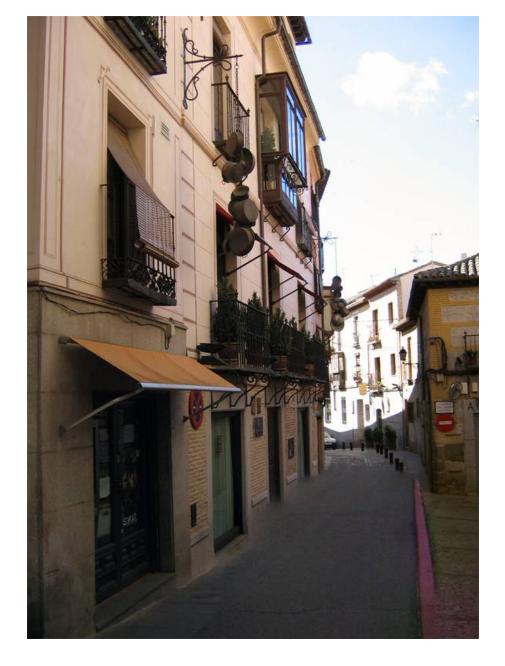


Diffusion Result

Efros and Leung result

Scene Matching for Image Completion



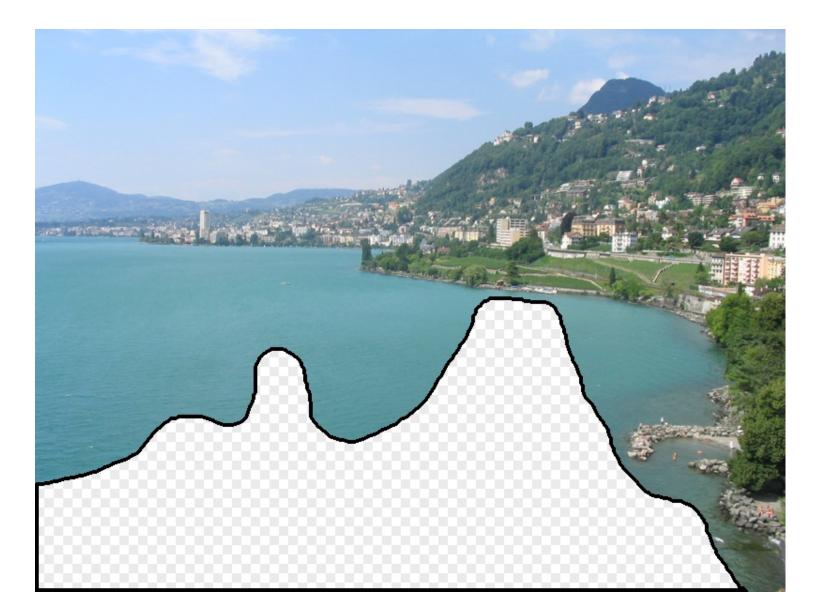


Scene Completion Result

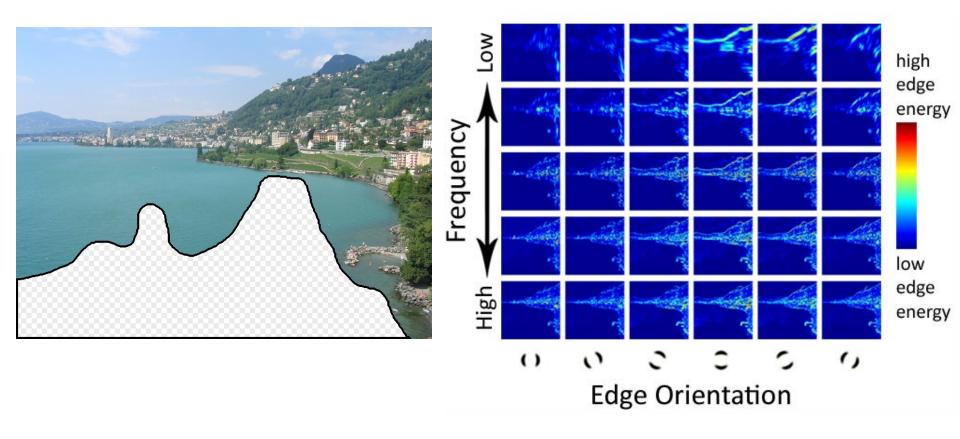
The Algorithm



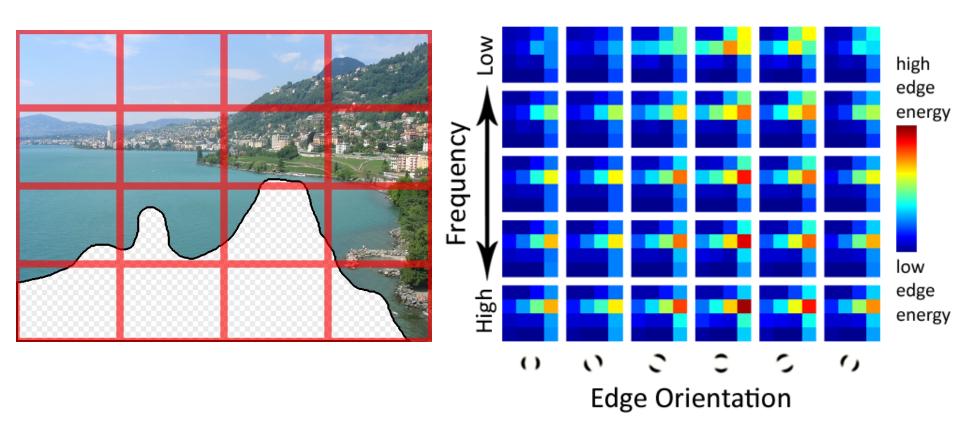
Scene Matching



Scene Descriptor

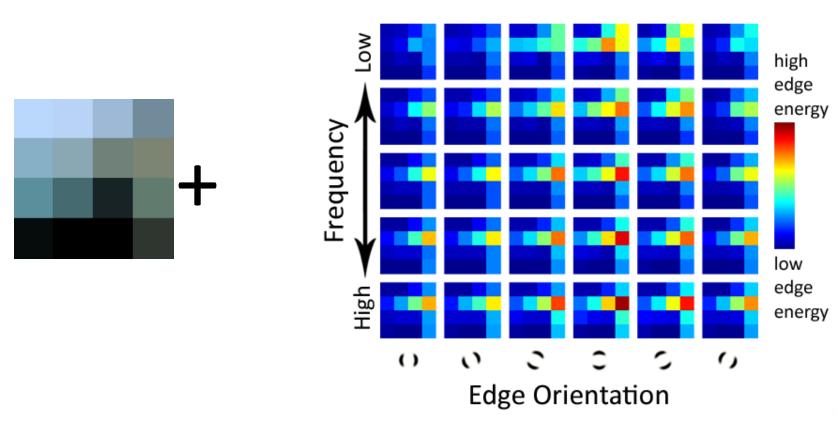


Scene Descriptor



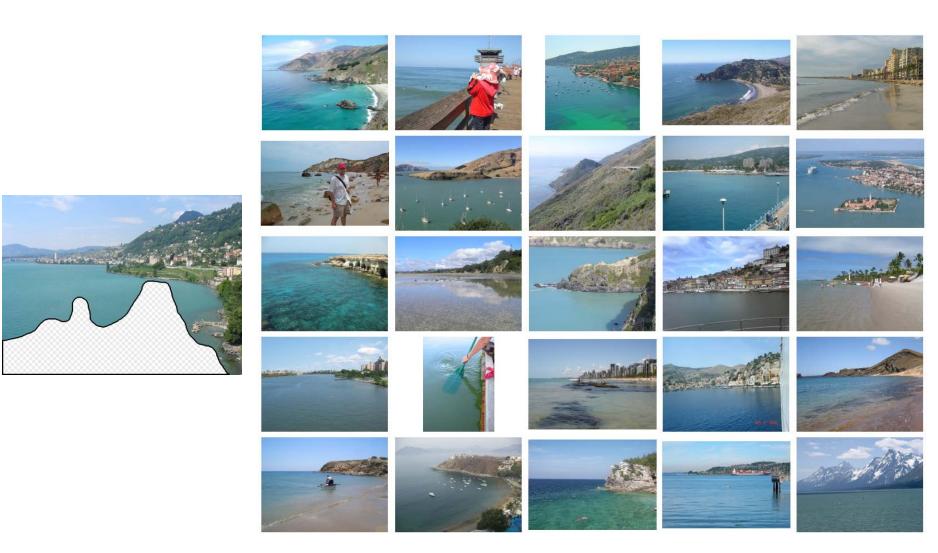
Scene Gist Descriptor (Oliva and Torralba 2001)

Scene Descriptor



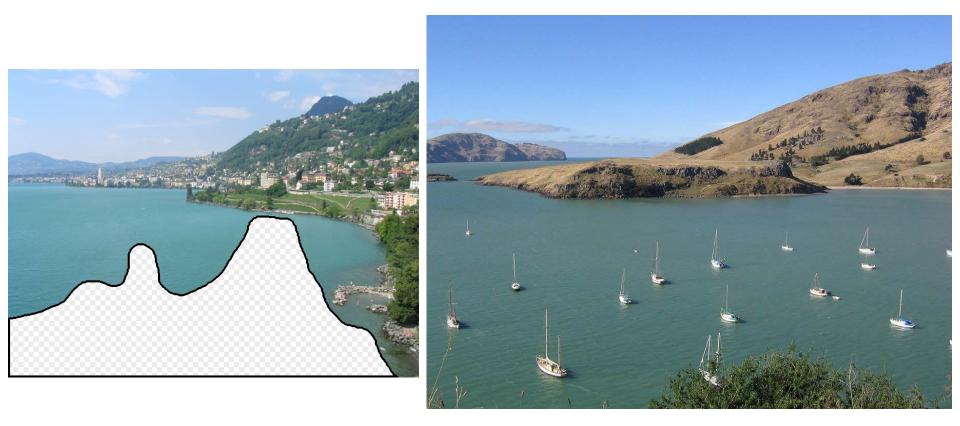
Scene Gist Descriptor (Oliva and Torralba 2001)

2 Million Flickr Images



... 200 total

Context Matching

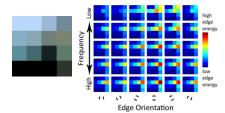


Graph cut + Poisson blending

Real Providence

Result Ranking

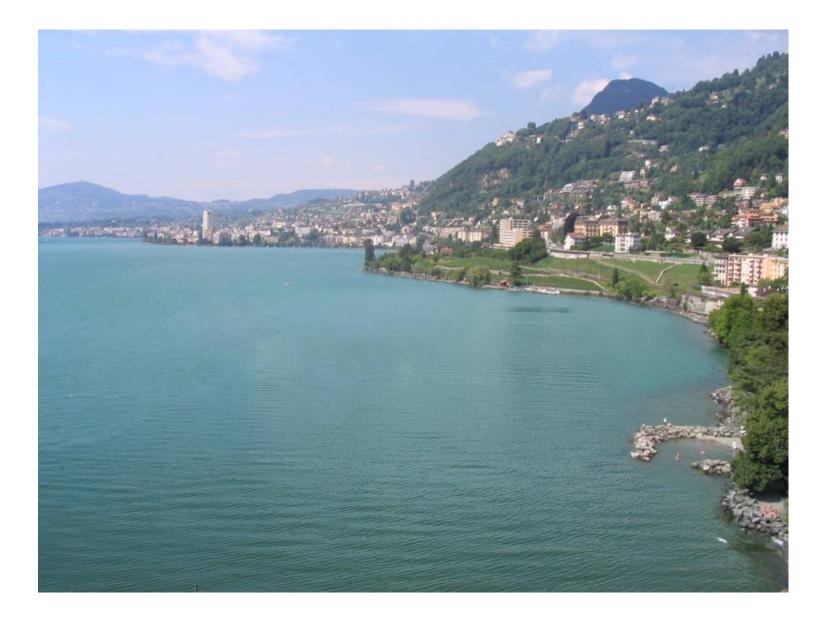
We assign each of the 200 results a score which is the sum of:

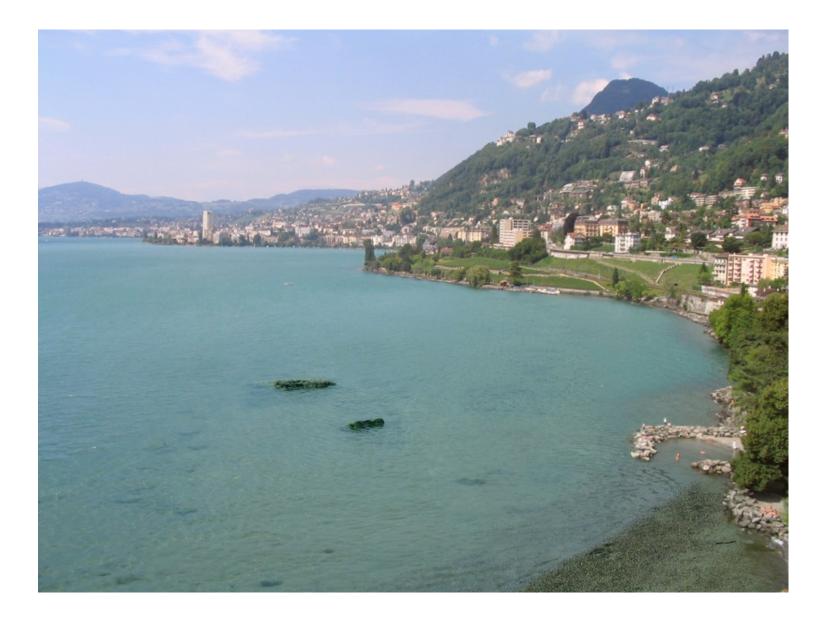


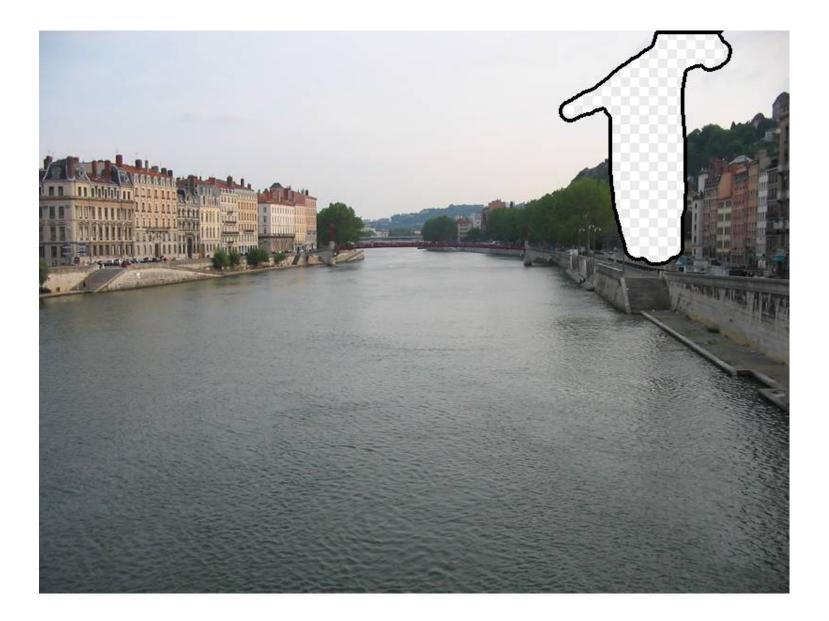
The scene matching distance

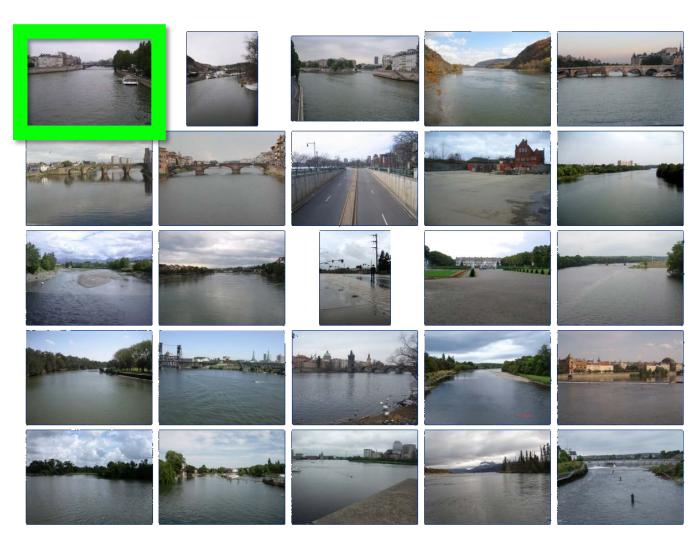
The context matching distance (color + texture)

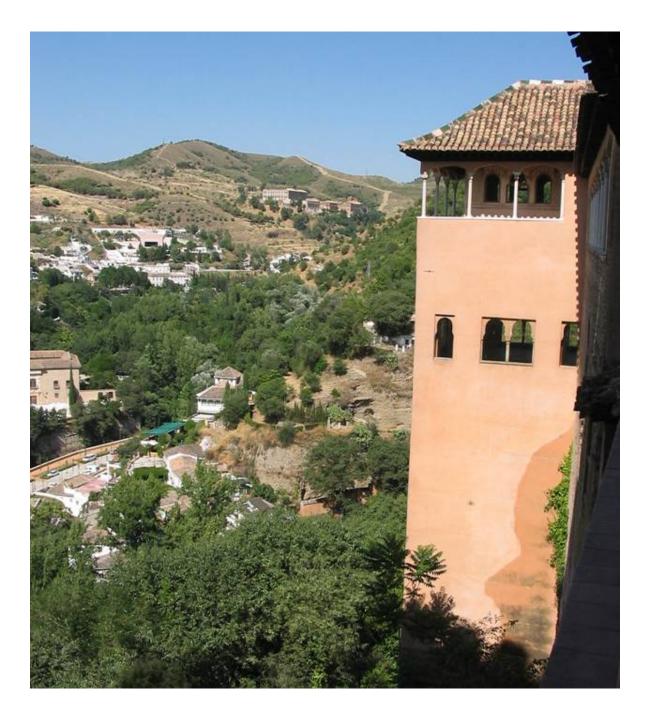
The graph cut cost

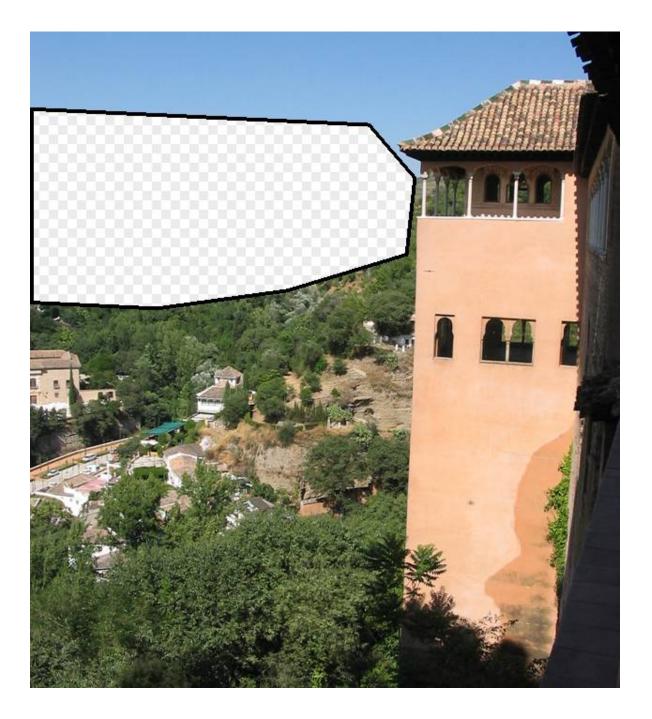


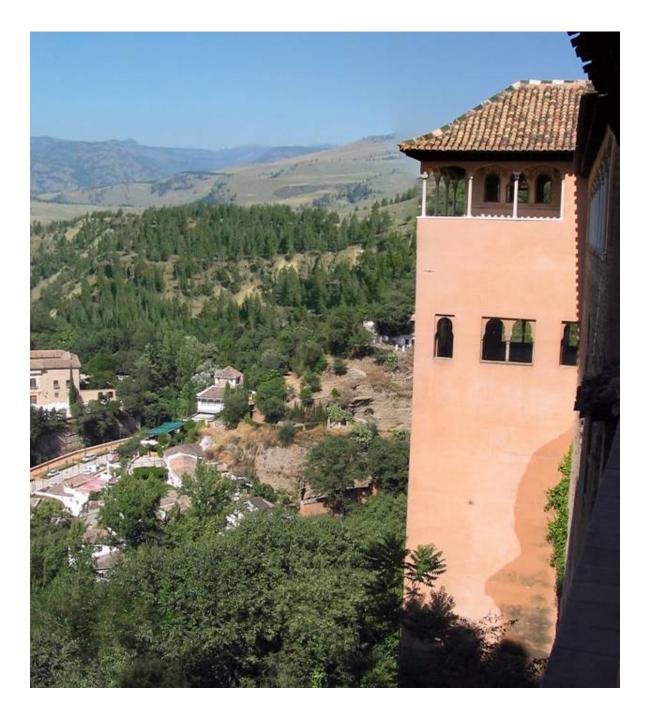






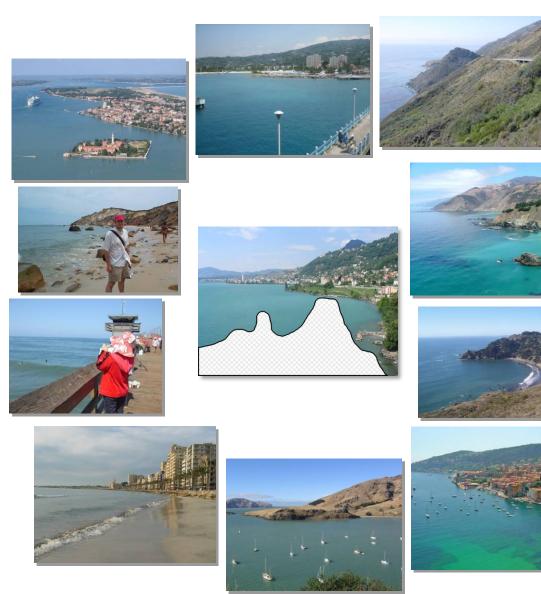






Why does it work?

Nearest neighbors from a collection of 20 thousand images



Nearest neighbors from a collection of 2 million images

"Unreasonable Effectiveness of Data"

- [Halevy, Norvig, Pereira 2009]
- Parts of our world can be explained by elegant mathematics
 - physics, chemistry, astronomy, etc.
- But much cannot
 - psychology, economics, genetics, etc.
- Enter <u>The Data!</u>
 - Great advances in several fields:
 - e.g. speech recognition, machine translation
 - Case study: Google

- A.I. for the postmodern world:
 - all questions have already been answered...many times, in many ways
 - Google is dumb, the "intelligence" is in the data

N
N
🗊 🕻 What's Related
ch Tips
0.06 second
ì

How about visual data?

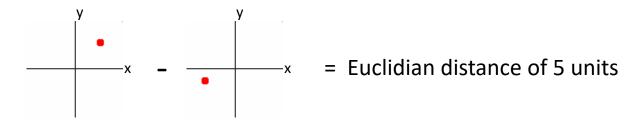
- text is simple:
 - clean, segmented, compact, 1D
- Visual data is much harder:
 - Noisy, unsegmented, high entropy, 2D/3D

Quick Overview

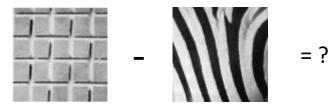
Comparing Images Uses of Visual Data

The Dangers of Data

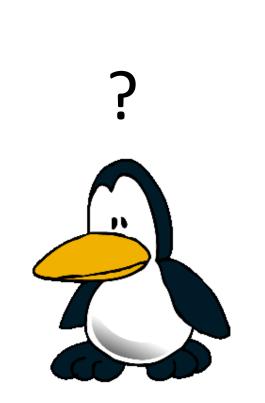
Distance Metrics



= Grayvalue distance of 50 values



SSD says these are not similar



Gist of a scene

Need a full image descriptor, to capture the context

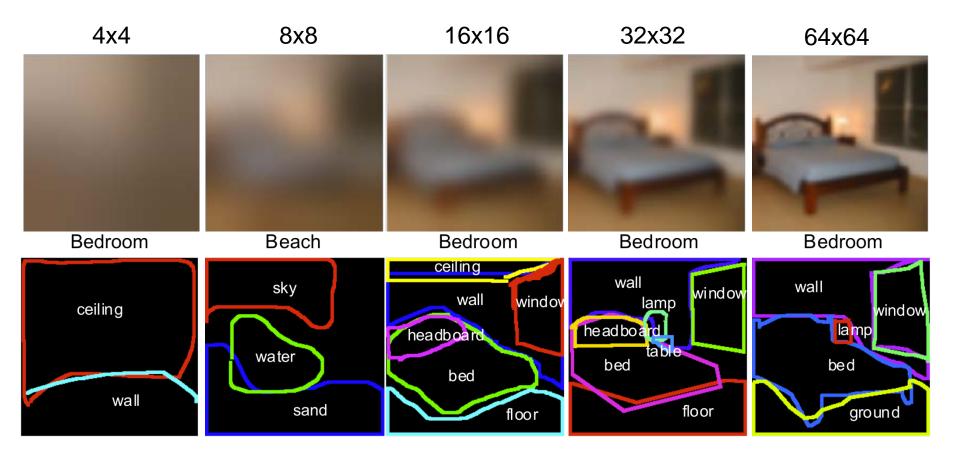
 But still want it to be not too high-dimentional (else nothing will look similar)

Make them tiny!

Tiny Images

 80 million tiny images: a large dataset for nonparametric object and scene recognition Antonio Torralba, Rob Fergus and William T. Freeman. PAMI 2008.

Tiny Images pack a punch!



256x256

32x32

wall-space

office

drawers

windows

waiting area

table

plant

reception desk

wndow

dining room

window

chairs

light

plant

table

dining room ceiling light ture doors center piece table air d chair chair floor

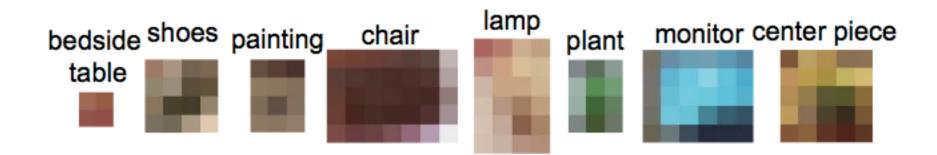
c) Segmentation of 32x32 images

Cauche

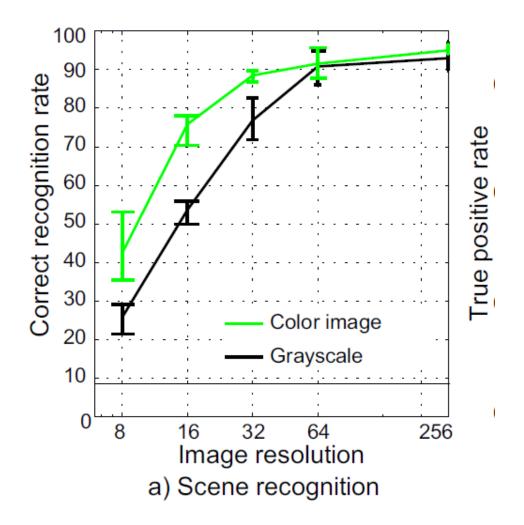
chairs

desk

Image Segmentation (by humans)



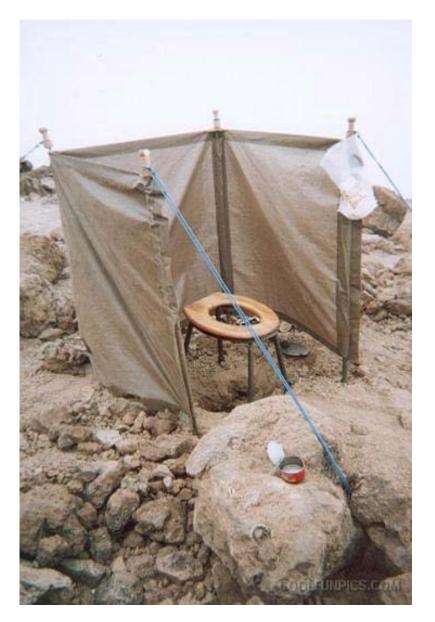
Human Scene Recognition



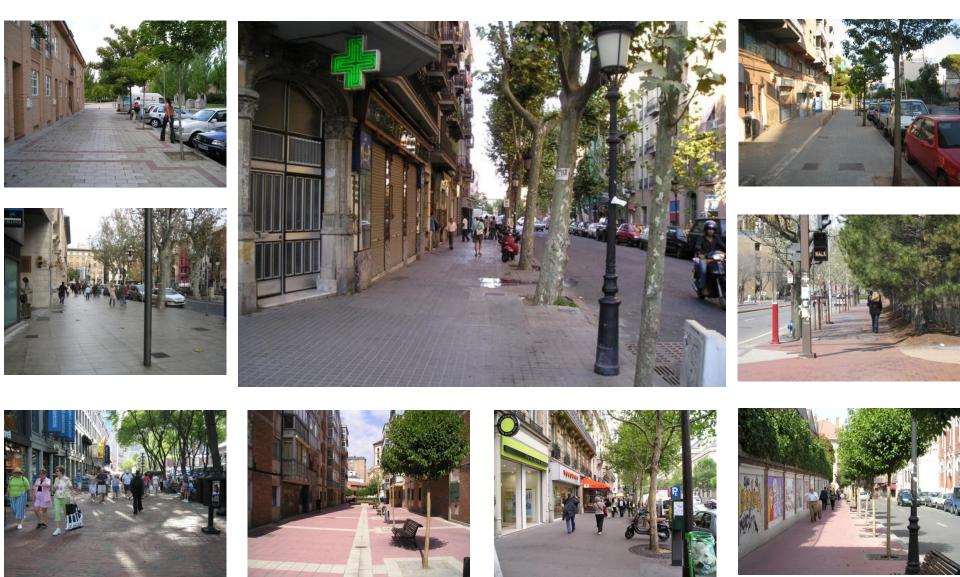
Tiny Images Project Page

http://groups.csail.mit.edu/vision/TinyImages/

Scenes are unique



But not all scenes are so original



But not all scenes are so original

Lots Of

Images

Of Images

Lots

Target 7,900 790,000

Lots Of

Images

790,000

Target

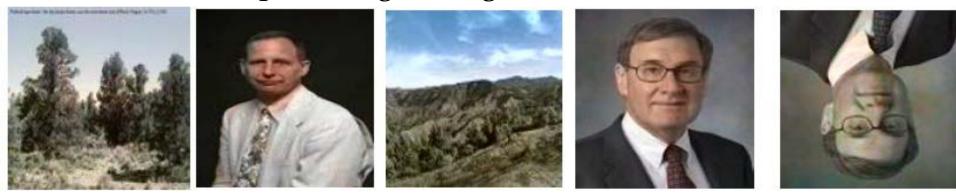
7,900



Automatic Colorization Result

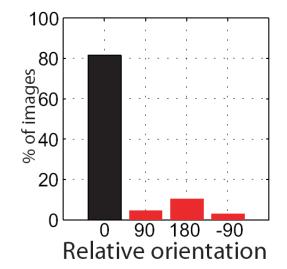
Grayscale input High resolution

Colorization of input using average



Automatic Orientation

- Many images have ambiguous orientation
- Look at top 25% by confidence:



• Examples of high and low confidence images:

Automatic Orientation Examples

A. Torralba, R. Fergus, W.T.Freeman. 2008

a) Input image

scientist chemist

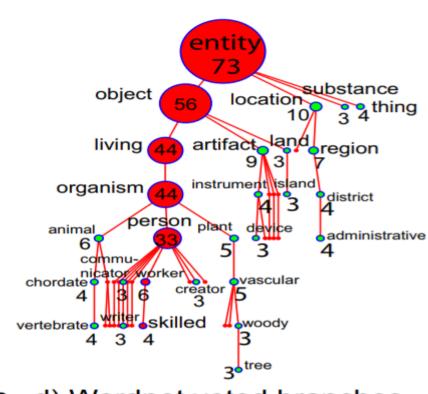
entity

object

living

organism

person



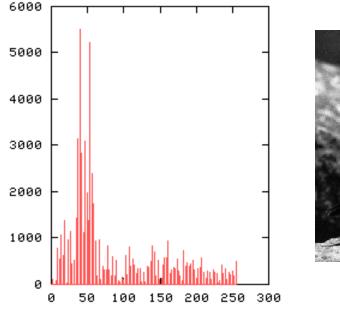
b) Neighbors c) Ground truth d) Wordnet voted branches

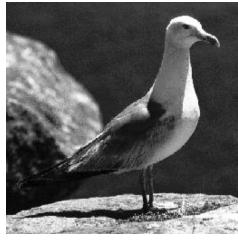
Tiny Images Discussion

- Why SSD?
- Can we build a better image descriptor?

Image Representations: Histograms

Images from Dave Kauchak

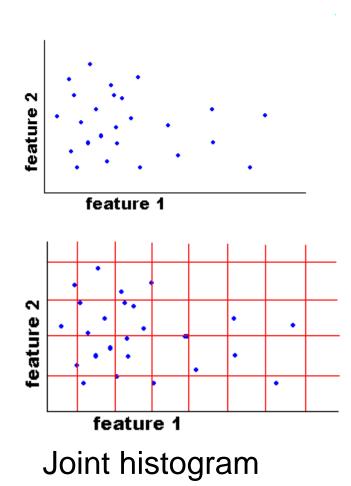




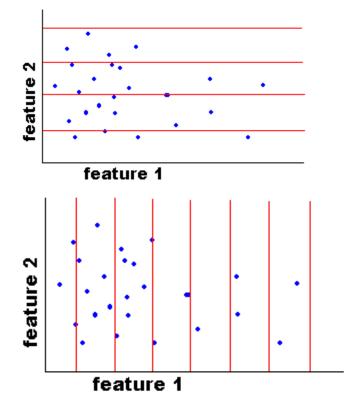
global histogram

- Represent distribution of features
 - Color, texture, depth, ...

Image Representations: Histograms



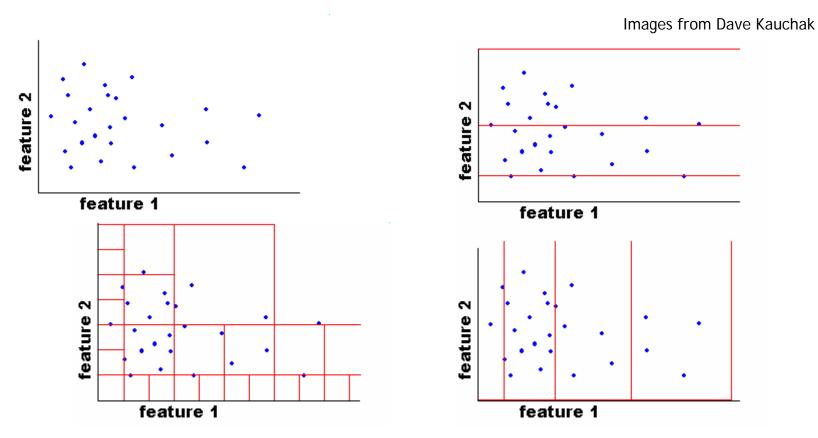
- Requires lots of data
- Loss of resolution to avoid empty bins



Marginal histogram

- Requires independent features
- More data/bin than joint histogram

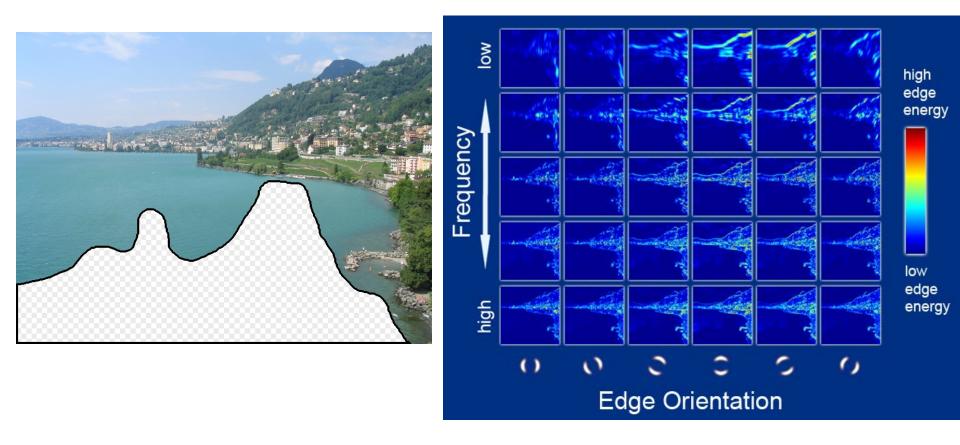
Image Representations: Histograms



Adaptive binning

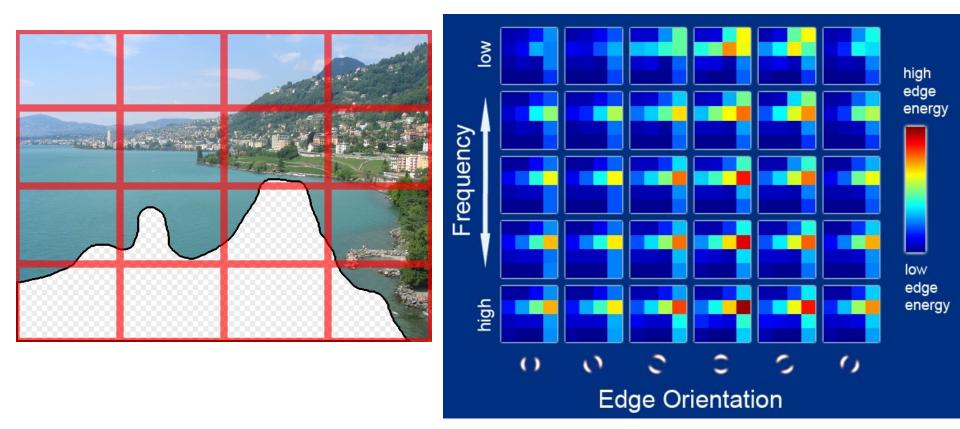
- Better data/bin distribution, fewer empty bins
- Can adapt available resolution to relative feature importance

Gist Scene Descriptor



Hays and Efros, SIGGRAPH 2007

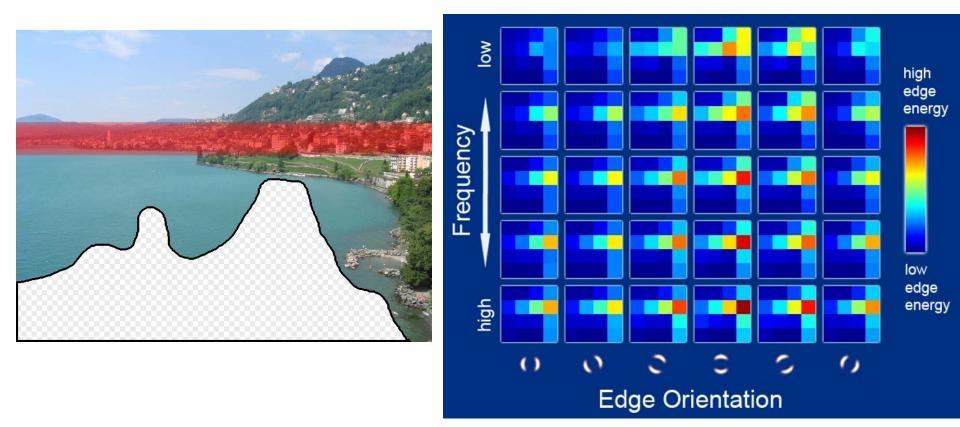
Gist Scene Descriptor



Gist scene descriptor (Oliva and Torralba 2001)

Hays and Efros, SIGGRAPH 2007

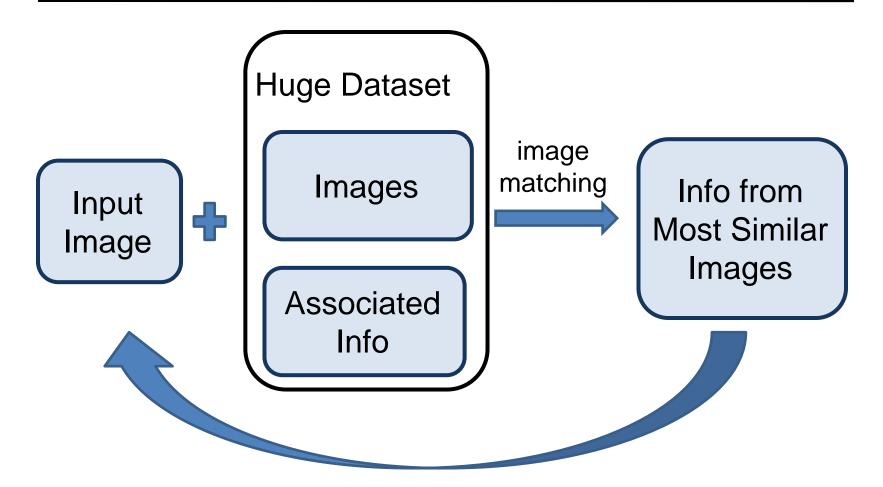
Gist Scene Descriptor



Gist scene descriptor (Oliva and Torralba 2001)

Hays and Efros, SIGGRAPH 2007

Recap: Using lots of data!

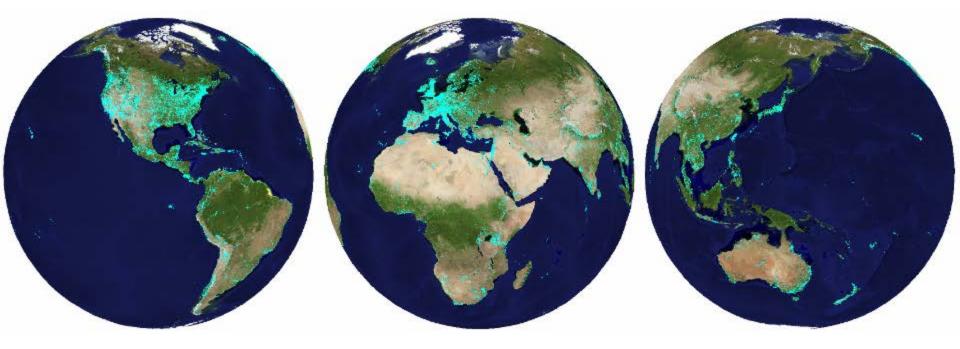


Trick: If you have enough images, the dataset will contain very similar images that you can find with simple matching methods.

Label Transfer

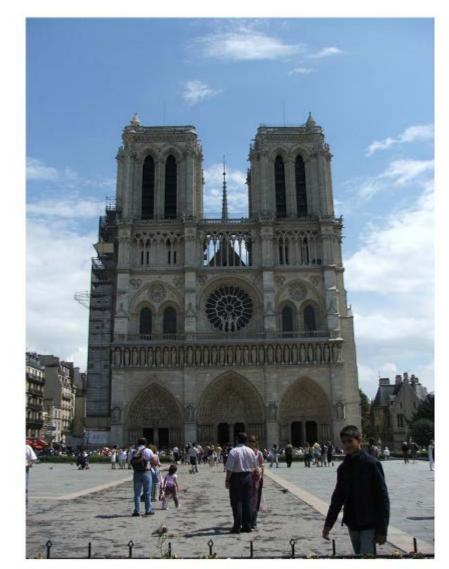
Tags: Sky, Water, Beach, Sunny, ... Time: 1pm, August, 2006, ... Location: Italy, Greece, Hawaii ... Photographer: Flickrbug21, Traveller2

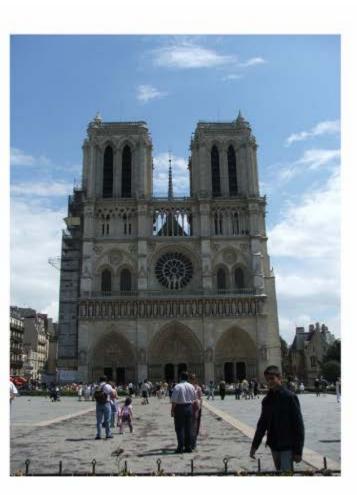
im2gps (Hays & Efros, CVPR 2008)



6 million geo-tagged Flickr images

How much can an image tell about its geographic location?





Paris

Rome

Paris

Paris

Paris

Poland

Paris

Cuba

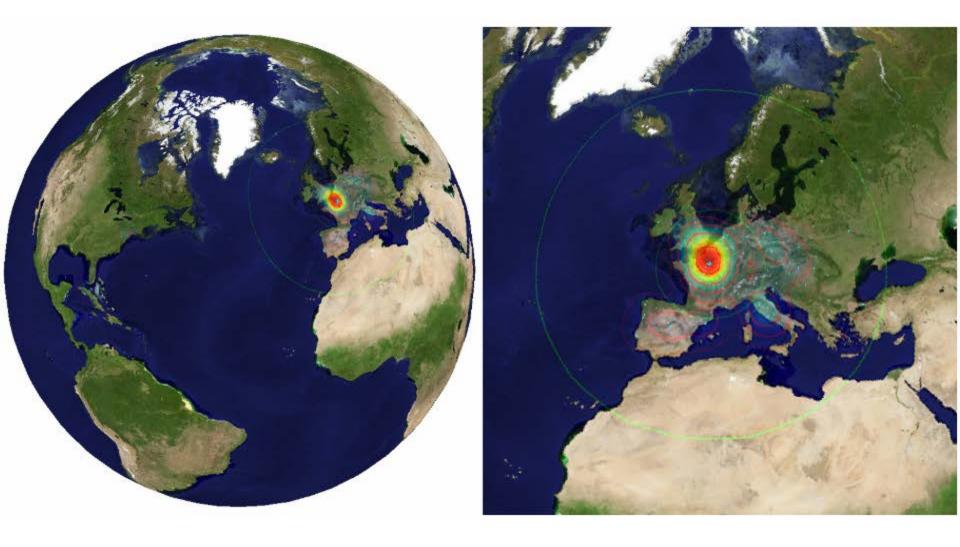
Paris

Paris

Madrid

Paris

Paris



Im2gps

Example Scene Matches

heidelberg

Macau

Barcelona

Paris

Malta

Austria

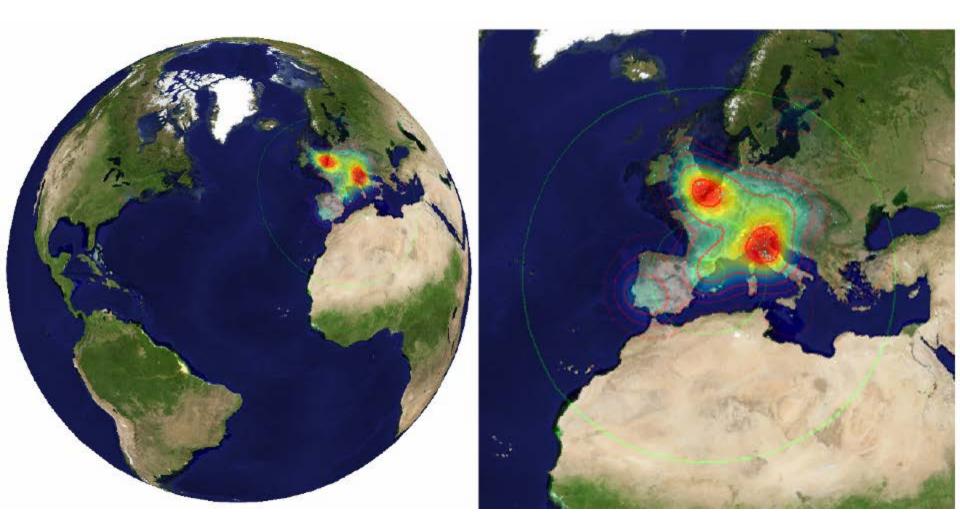
Latvia

Cairo

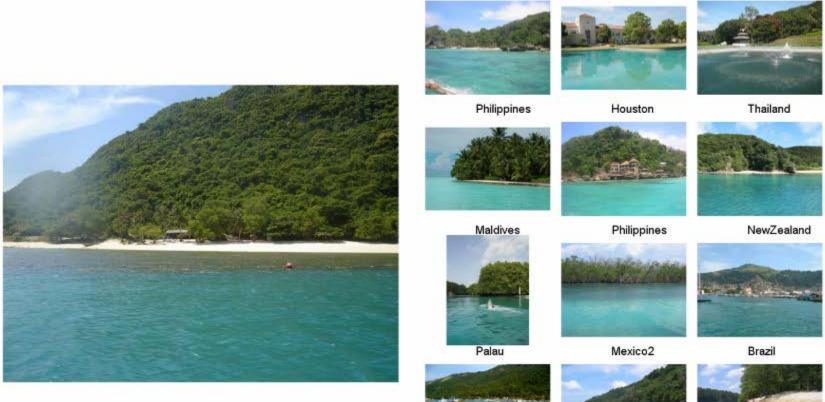
europe

Italy

Voting Scheme



im2gps



Bermuda

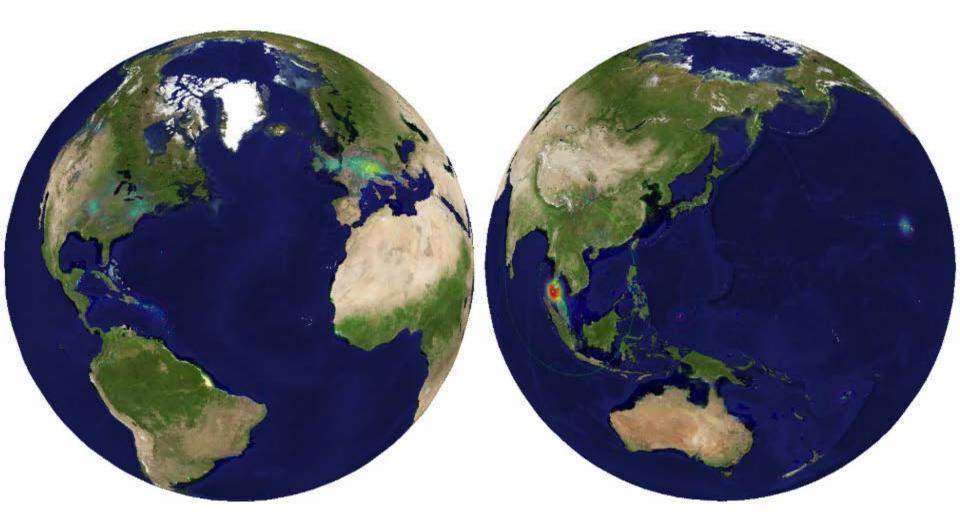
Houston

Mendoza

Brazil

Thailand

Hawaii



USA

Utah

Arizona

Utah

Utah

Utah

Kenya

Utah

LosAngeles

Utah

NewMexico

Mendoza

Utah



California

Okiahoma

SouthAfrica

Zambia

Kenya

Hyderabad

SouthAfrica

Kenya

Kenya

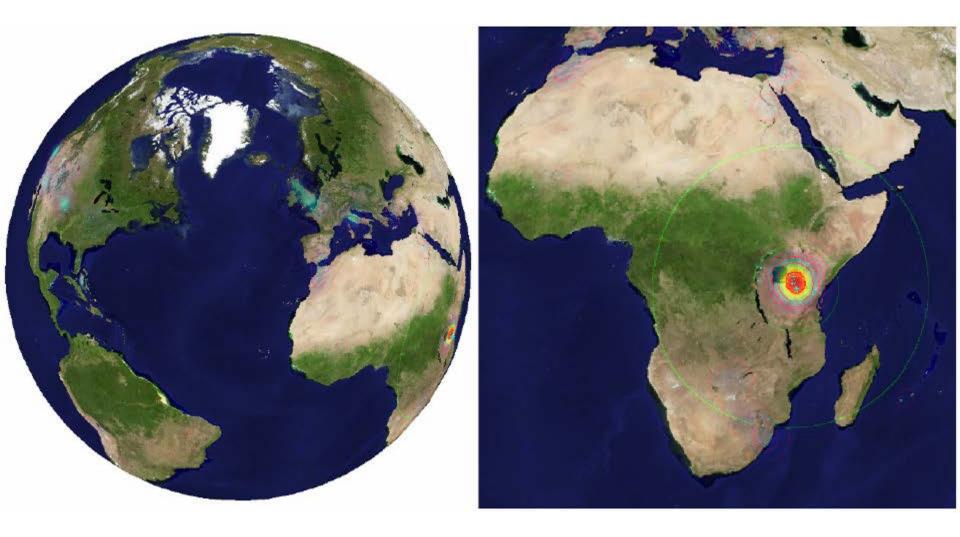
Ethiopia

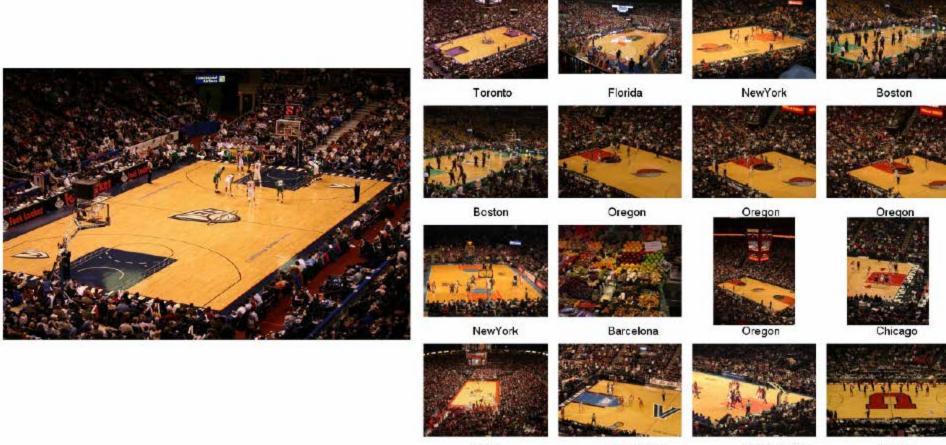
Nevada

Tennessee

africa

Morocco



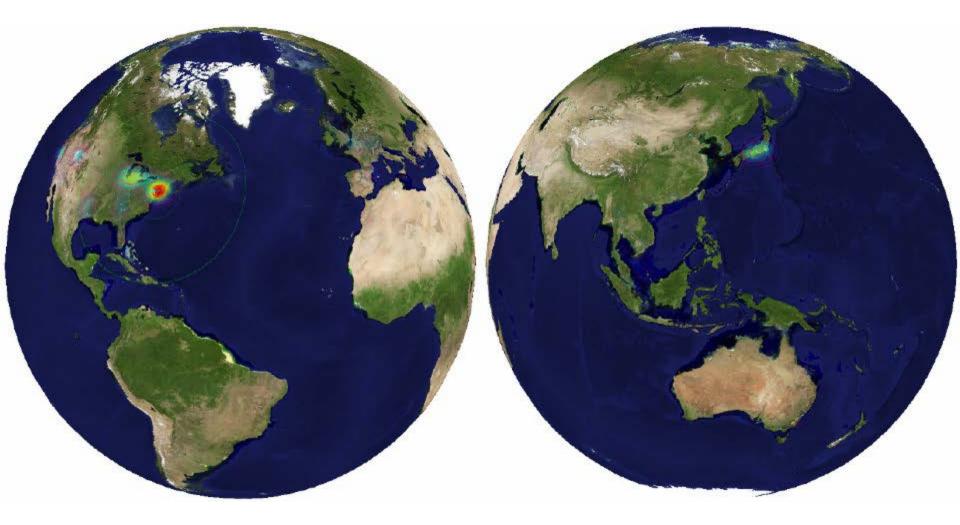


Ohio

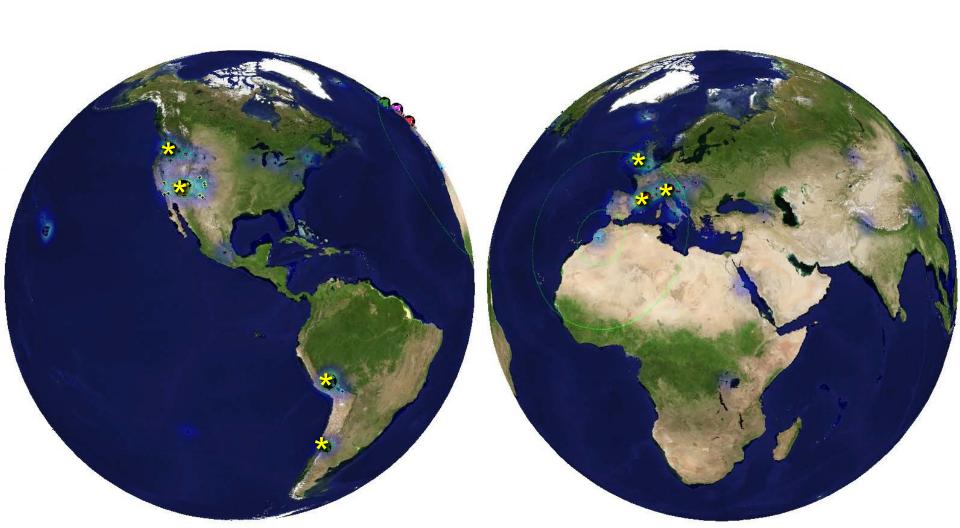
Philadelphia

NewYorkCity

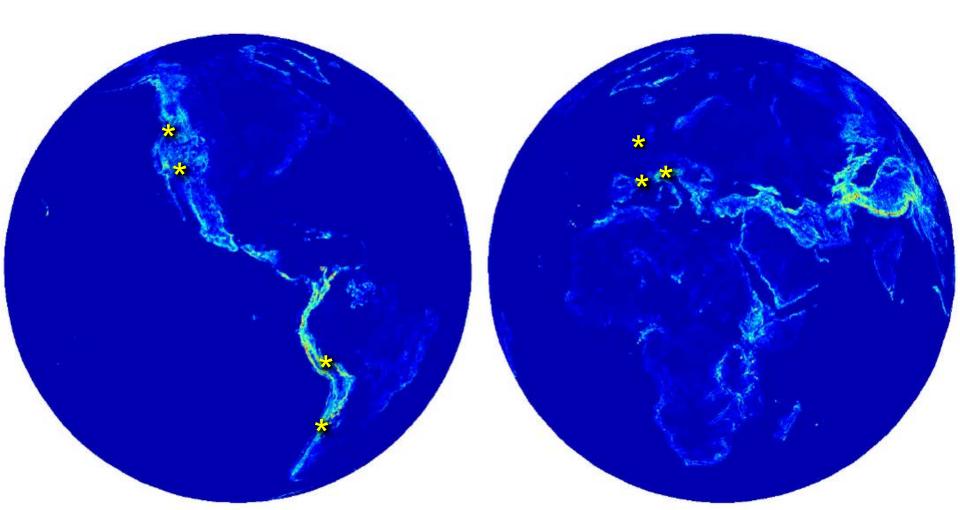
Boston



Data-driven categories



Elevation gradient = 112 m / km



Elevation gradient magnitude ranking

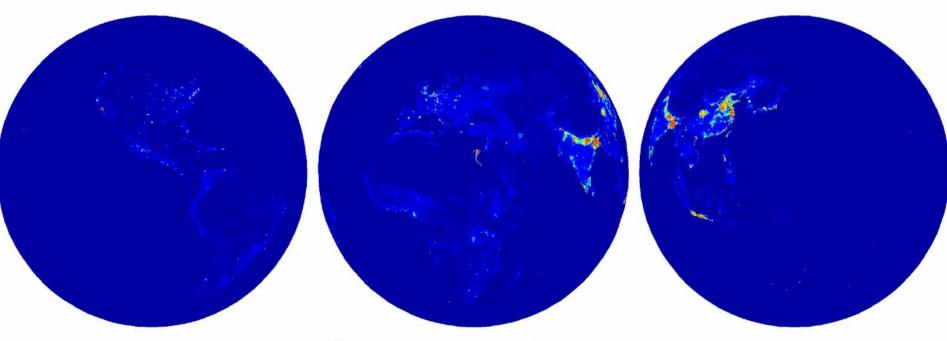


Figure 2. Global population density map.

Population density ranking

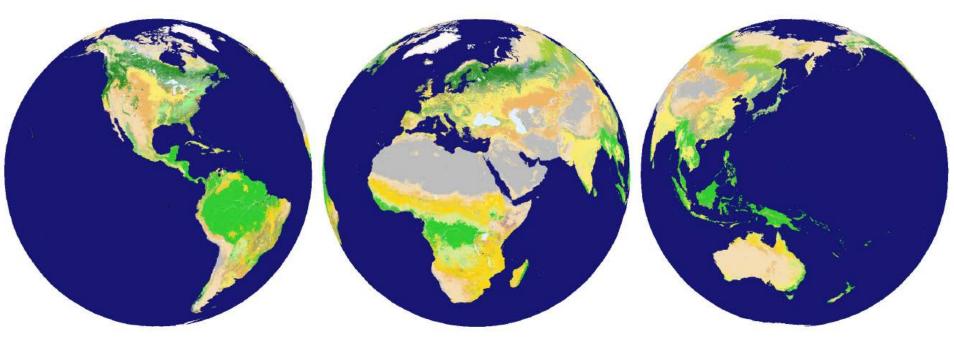
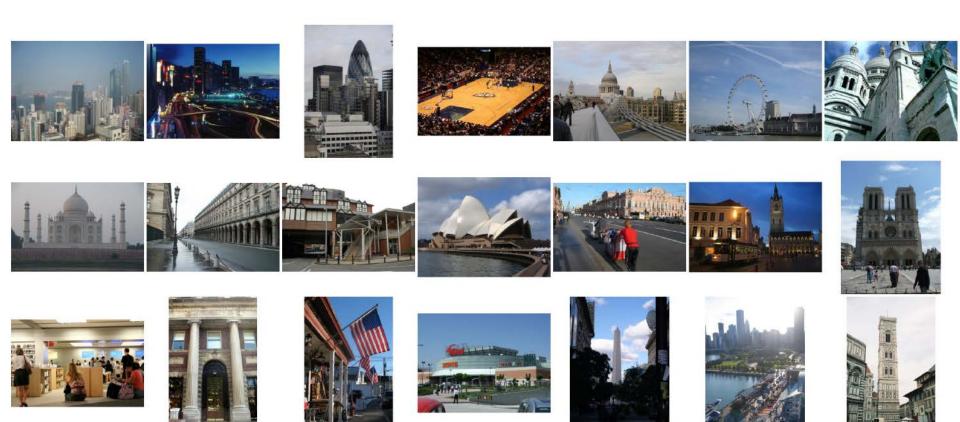


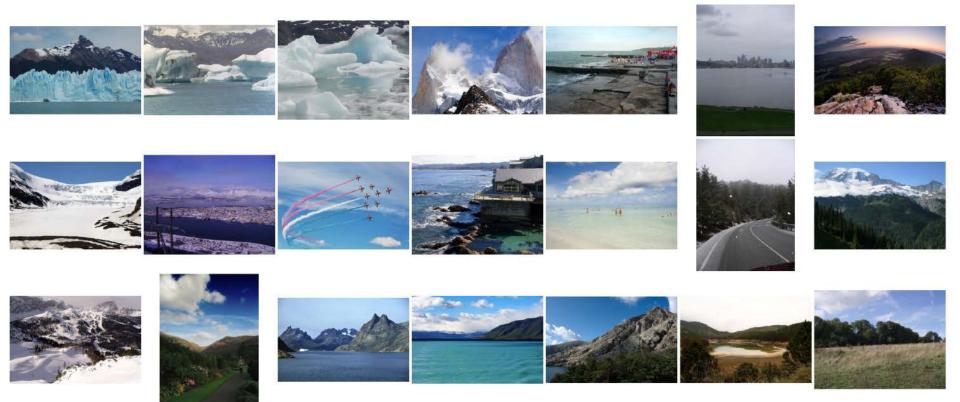
Figure 4. Global land cover classification map.

Barren or sparsely populated

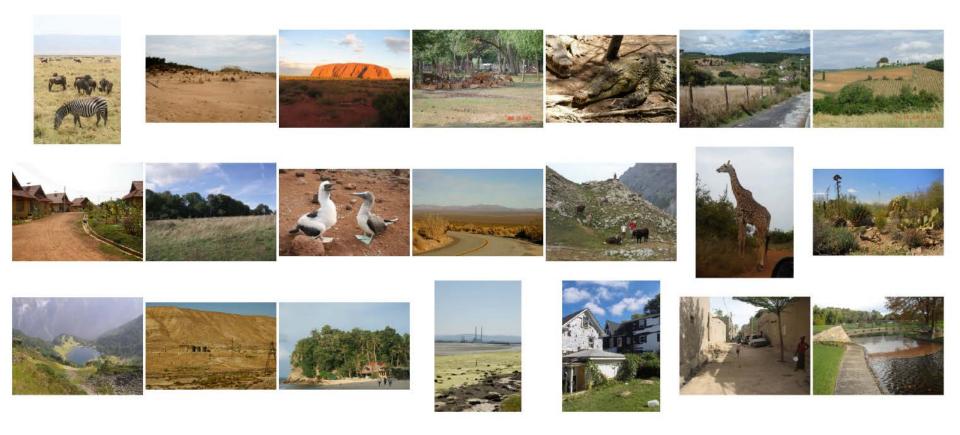
Urban and built up



Snow and Ice



Savannah



Water

But surely the brain can't remember this much!?

What's the Capacity of Visual Long Term Memory?

What we know...

Standing (1973) 10,000 images 83% Recognition

... people can remember thousands of images

What we don't know...

... what people are remembering for each item?

According to Standing

"Basically, my recollection is that we just separated the pictures into distinct thematic categories: e.g. cars, animals, singleperson, 2-people, plants, etc.) Only a few slides were selected which fell into each category, and they were visually distinct."

Dogs Playing Cards

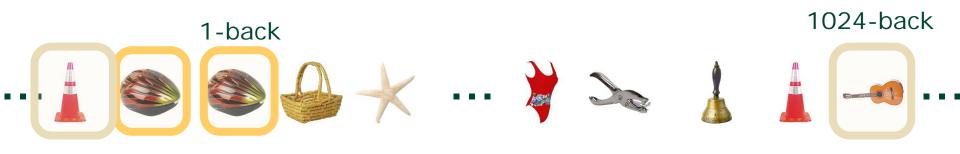
"Gist" Only

Sparse Details

Highly Detailed

Slide by Aude Oliva

Massive Memory I: Methods



Showed 14 observers 2500 categorically unique objects

- 1 at a time, 3 seconds each
- 800 ms blank between items
- Study session lasted about 5.5 hours
- Repeat Detection task to maintain focus
- Followed by 300 2-alternative forced choice tests

Slide by Aude Oliva

Massive Memory Experiment I

A stream of objects will be presented on the screen for ~ 3 second each.

Your primary task:

Remember them ALL!

afterwards you will be tested with ...

Completely different objects...

Different exemplars of the same kind of object...

Different states of the same object...

Massive Memory Experiment I

Your other task:

Detect exact repeats anywhere in the stream

Ready?

(Seriously, get ready to clap. The images go by fast...)

<clap!>

<clap!>

10 Minutes Later...

<clap!>

<clap!>

30 Minutes Later...

1 Hour Later...

<clap!>

2 Hours Later...

<clap!>

4 Hours Later...

<clap!>

5:30 Hours Later...

Which one did you see?

(go ahead and shout out your answer)

-B-

-A-

-B-

-A-

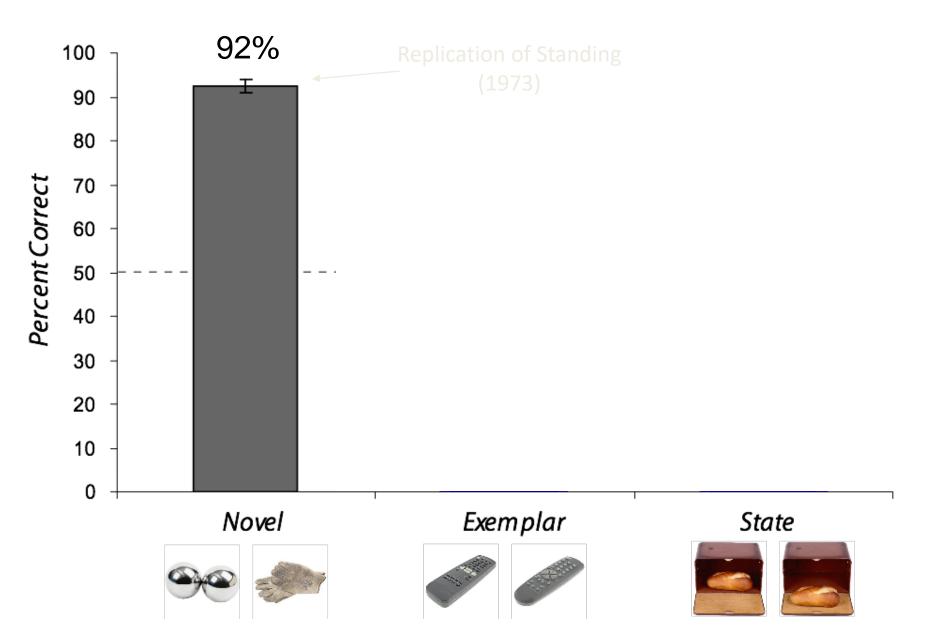
-B-

-A-

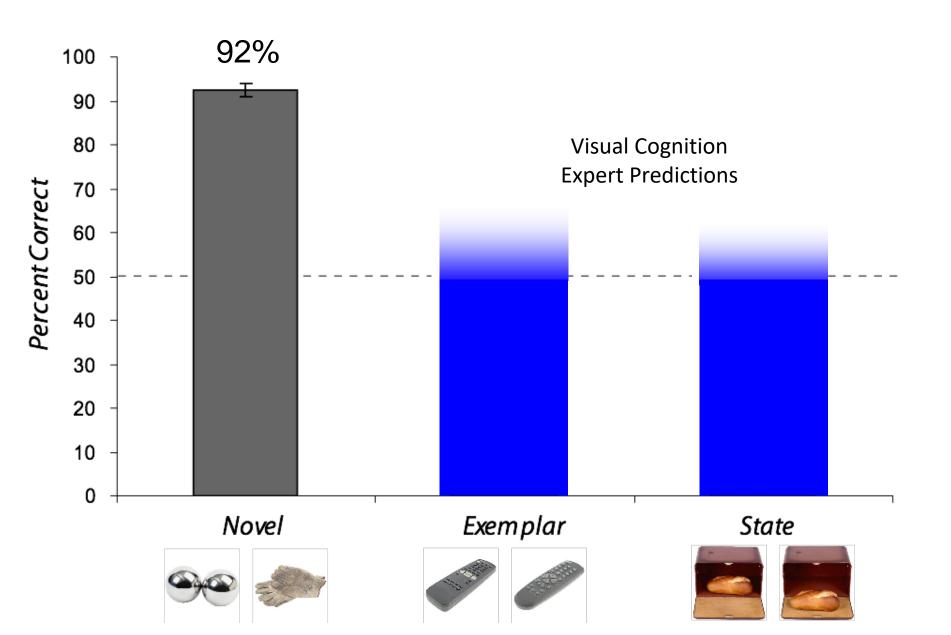
Examples of State memory test

All stimuli available at: cvcl.mit.edu/MM

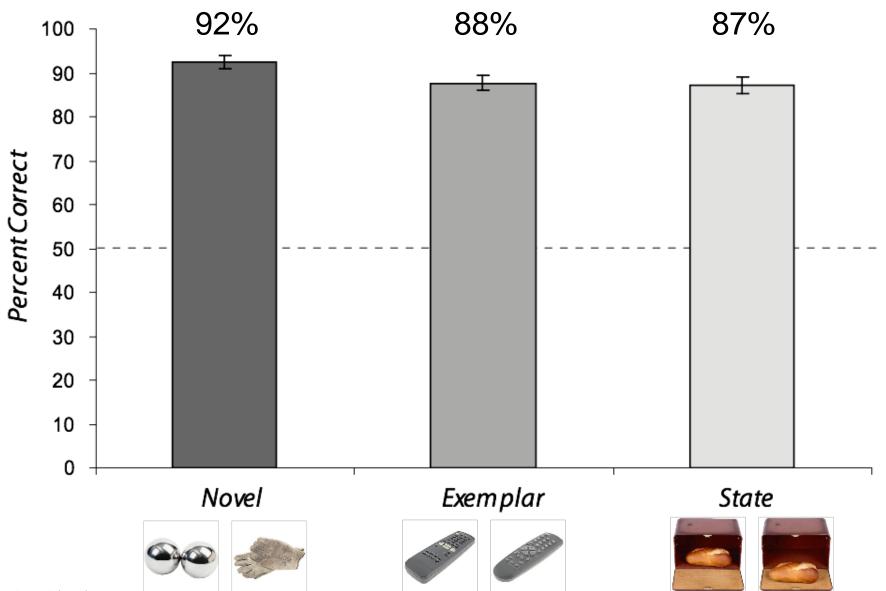
Recognition Memory Results



Recognition Memory Results



Recognition Memory Results



Using Data for Image Creation...

Michel Gondry, Je Danse la Mia

https://www.youtube.com/watch?v=7ceNf9qJjgc

Scene matching with camera transformations

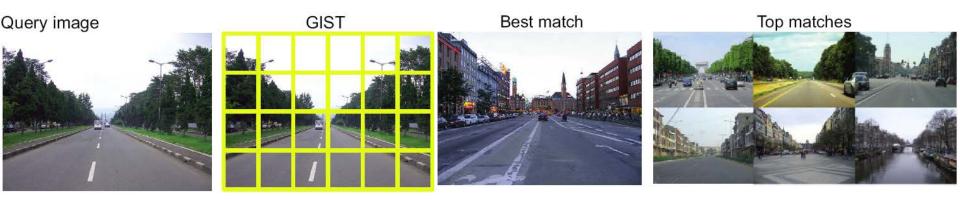
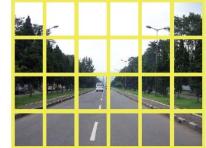


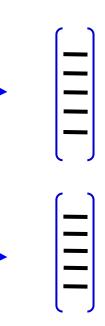
Image representation

Original image

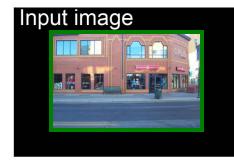
GIST [Oliva and Torralba'01]



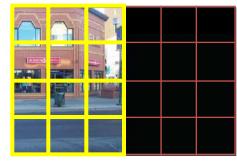
Color layout



Scene matching with camera view transformations: Translation

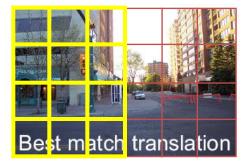


1. Move camera



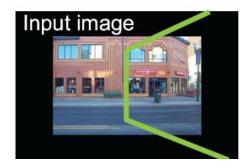
2. View from the virtual camera

- 4. Locally align images
- 5. Find a seam
- 6. Blend in the gradient domain



 Find a match to fill the missing pixels

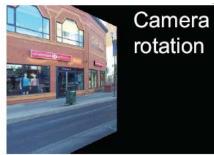
Scene matching with camera view transformations: Camera rotation



1. Rotate camera

4. Stitched rotation

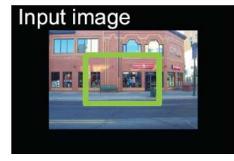
5. Display on a cylinder



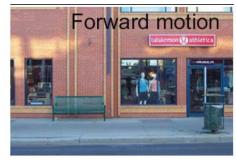
2. View from the virtual camera

3. Find a match to fill-in the missing pixels

Scene matching with camera view transformations: Forward motion



1. Move camera



2. View from the virtual camera

3. Find a match to replace pixels

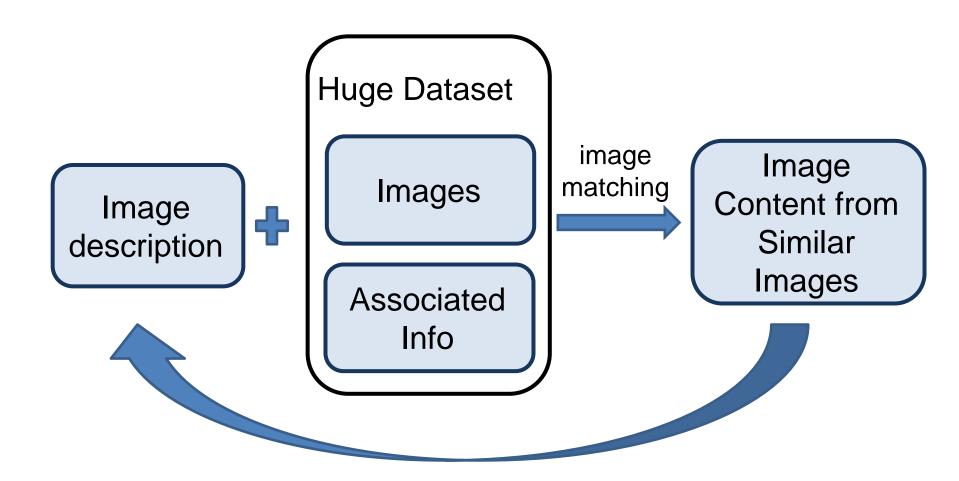
Tour from a single image

Navigate the virtual space using intuitive motion controls

Video

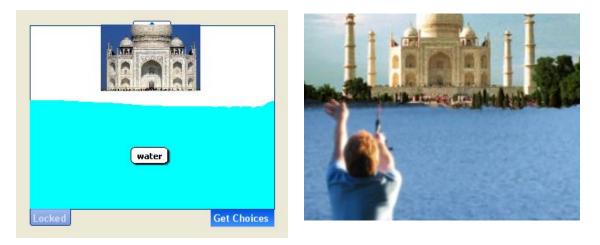
http://www.youtube.com/watch?v=E0rboU10rPo

Semantic Photo Synthesis



M. Johnson, G. Brostow, J. Shotton, O. A. c, and R. Cipolla, "Semantic Photo Synthesis," Computer Graphics Forum Journal (Eurographics 2006), vol. 25, no. 3, 2006.

Semantic Photo Synthesis [EG'06]



Johnson, Brostow, Shotton, Arandjelovic, Kwatra, and Cipolla. Eurographics 2006.

Semantic Photo Synthesis

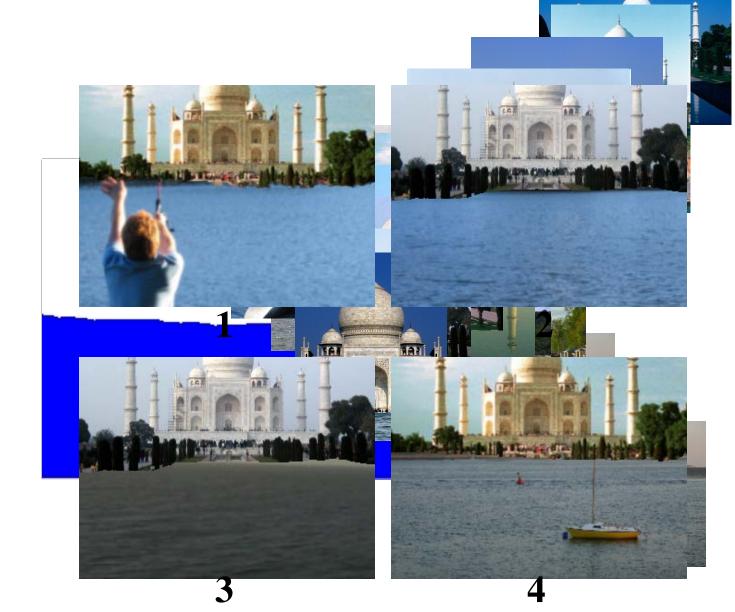
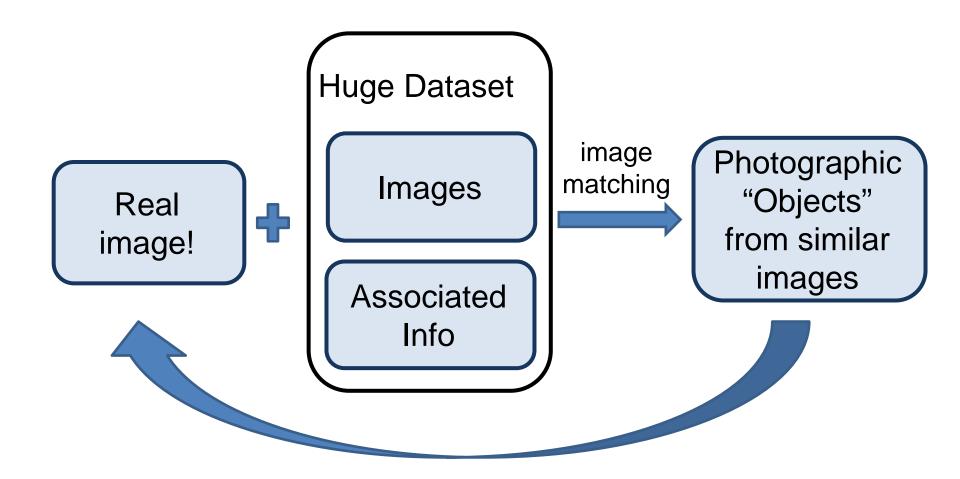


Photo Clip Art



J.-F. Lalonde, D. Hoiem, A. A. Efros, C. Rother, J. Winn, and A. Criminisi, "Photo Clip Art," ACM Transactions on Graphics (SIGGRAPH 2007), vol. 26, no. 3, Aug. 2007.

Photo Clip Art [SG'07]

Inserting a single object -- still very hard!

Lalonde et al, SIGGRAPH 2007

Photo Clip Art [SG'07]

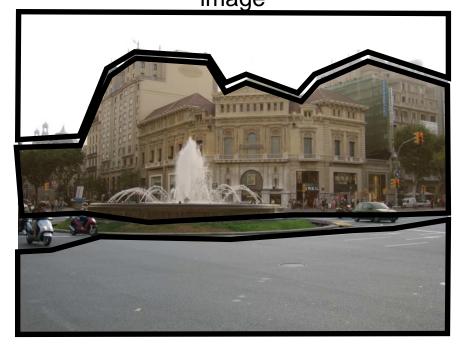
Use database to find well-fitting object

Lalonde et al, SIGGRAPH 2007

Geometry is not enough

Illumination context

- Exact environment map is impossible
- Approximations [Khan et al., '06]
 Database Environment ma image



Environment map rough approximation

Illumination context

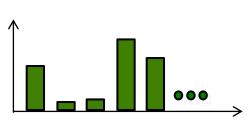
Database image

Automatic Photo Popup Hoiem et al., SIGGRAPH '05

P(pixel|class)



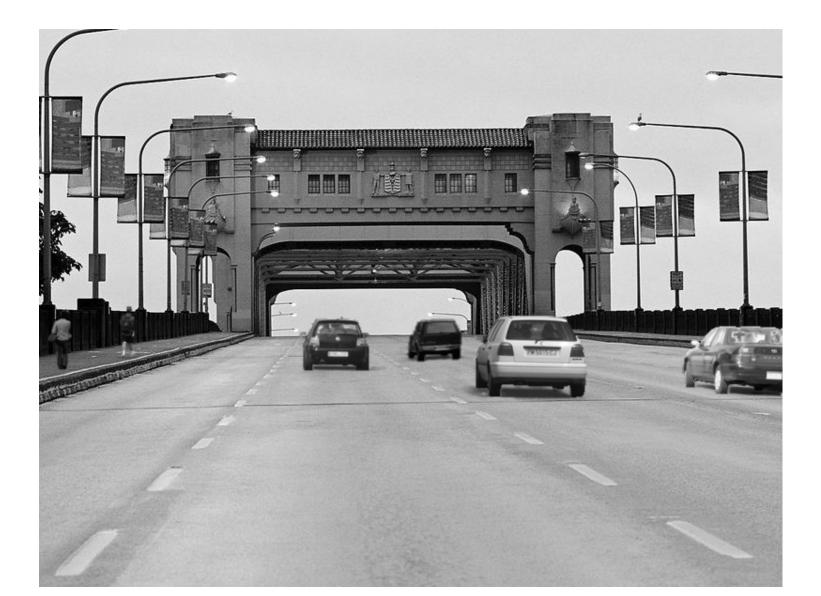
CIE L*a*b* histograms



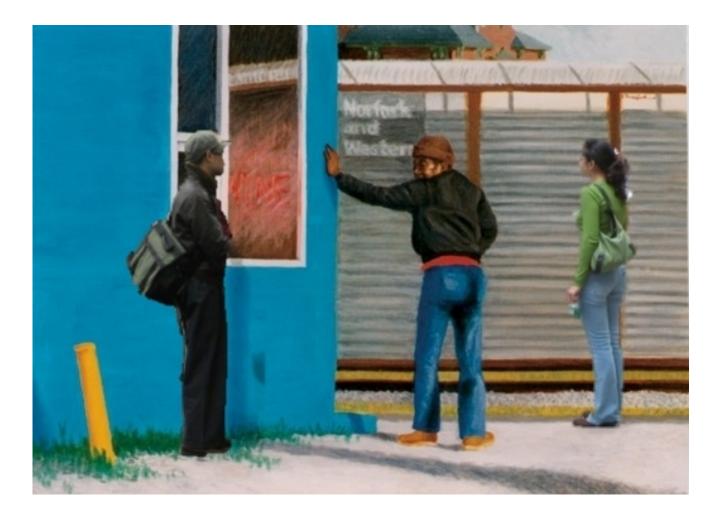
Illumination nearest-neighbors

Street accident

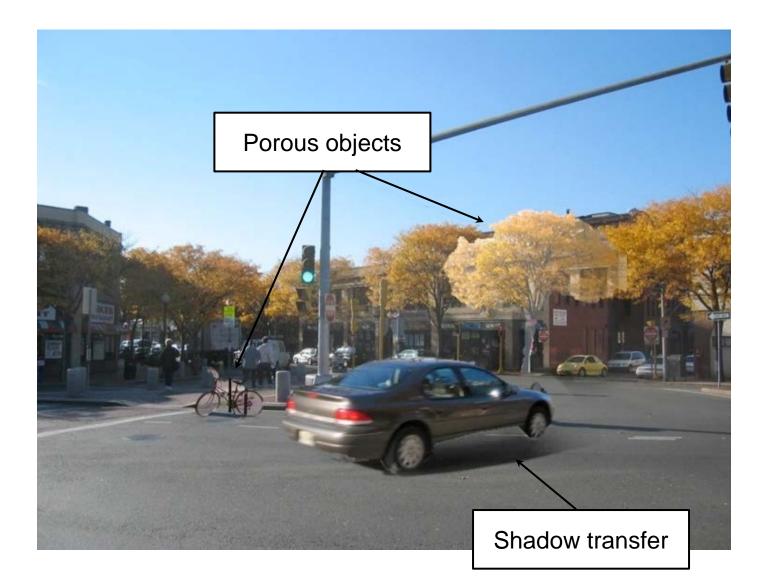
Bridge



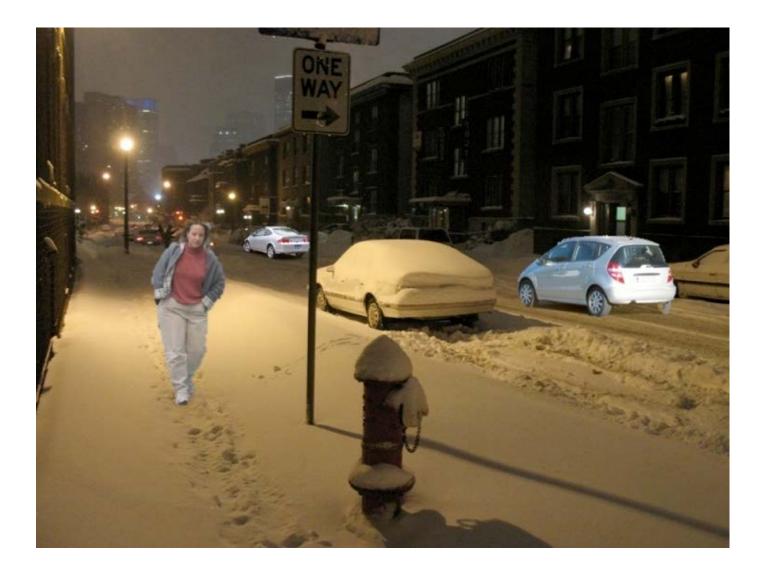
Painting



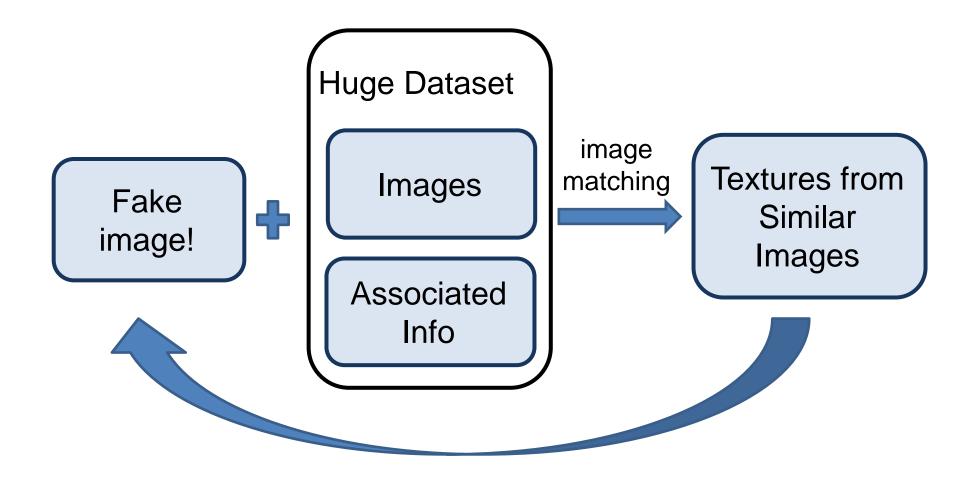
Failure cases



Failure cases

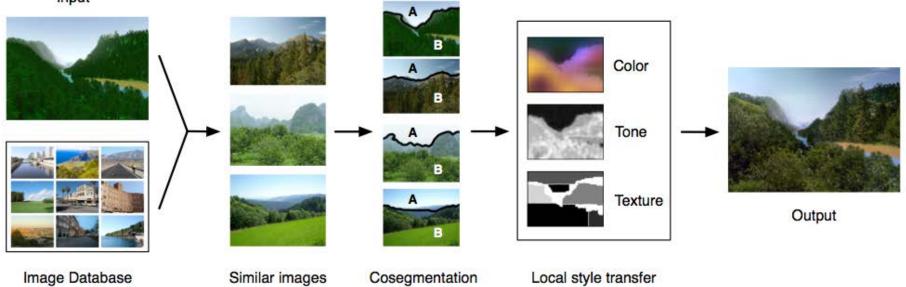


CG2Real



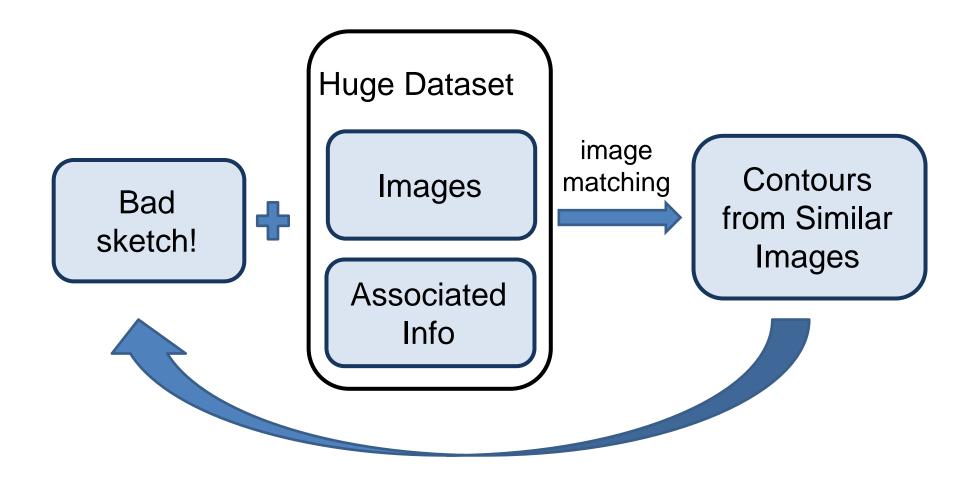
M. K. Johnson, K. Dale, S. Avidan, H. Pfister, W. T. Freeman, and W. Matusik, "CG2Real: Improving the realism of computer generated images using a large collection of photographs," IEEE Transactions on Visualization and Computer Graphics, 2010.

Input



M. K. Johnson, K. Dale, S. Avidan, H. Pfister, W. T. Freeman, and W. Matusik, "CG2Real: Improving the realism of computer generated images using a large collection of photographs," IEEE Transactions on Visualization and Computer Graphics, 2010.

ShadowDraw



ShadowDraw

http://www.youtube.com/watch?v=zh_-HUdQwow

Explore Visual Data

AverageExplorer

http://www.youtube.com/watch?v=1QgL_aPPCpM

The Dangers of Data

Bias

- Internet is a tremendous repository of visual data (Flickr, YouTube, Picassa, etc)
- But it's <u>not</u> random samples of visual world
- Many sources of bias:
 - Sampling bias
 - Photographer bias
 - Social bias

Flickr Paris

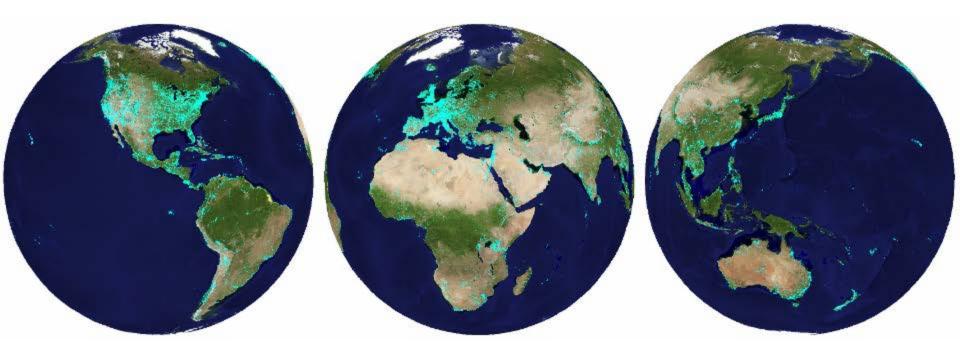
Real Paris



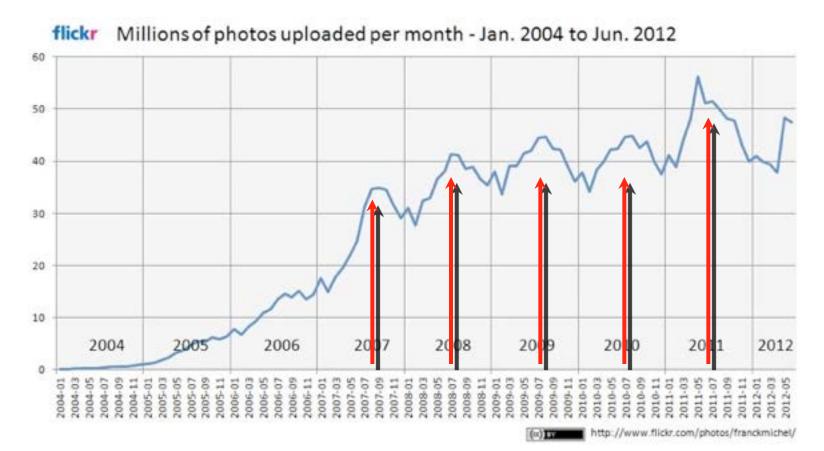
Real Notre Dame

Sampling Bias

People like to take pictures on vacation



People like to take pictures on vacation



Photographer Bias

 People want their pictures to be recognizable and/or interesting

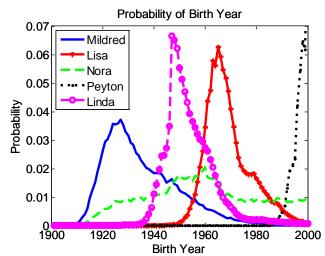
VS.

Photographer Bias

People follow photographic conventions

VS.

Social Bias



Mildred and Lisa

Source: U.S. Social Security Administration

Gallagher et al CVPR 2008

Social Bias

Gallagher et al CVPR 2008

Gallagher et al, CVPR 2009

Reducing / Changing Bias

2424 Bay St Address is approximate

Street side Google StreetView

Satellite google.com

Webcams

- Autonomous capture methods can reduce / change bias
 - But it won't go away completely
- Sometimes you can just pick your data to suit your problem, but not always...