More Mosaic Madness

© Jeffrey Martin (jeffrey-martin.com)

CS194: Image Manipulation & Computational Photography with a lot of slides stolen from Alexei Efros, UC Berkeley, Fall 2018 Steve Seitz and Rick Szeliski

Spherical Panoramas

See also: Time Square New Years Eve http://www.panoramas.dk/fullscreen3/f1.html

All light rays through a point form a ponorama Totally captured in a 2D array -- $P(\theta,\phi)$ Where is the geometry???

Homography

A: Projective – mapping between any two PPs with the same center of projection

- rectangle should map to arbitrary quadrilateral
- parallel lines aren't
- but must preserve straight lines
- same as: project, rotate, reproject

called Homography

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ I \end{bmatrix}$$
p

To apply a homography **H**

- Compute **p**' = **Hp** (regular matrix multiply)
- Convert p' from homogeneous to image coordinates

Rotational Mosaics

Can we say something more about <u>rotational</u> mosaics? i.e. can we further constrain our H?

3D → 2D Perspective Projection

$$(x,y,z) \to (-d\frac{x}{z}, -d\frac{y}{z})$$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim \begin{bmatrix} U \\ V \\ W \end{bmatrix} = \begin{bmatrix} f & 0 & u_c \\ 0 & f & v_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}$$

3D Rotation Model

Projection equations

1. Project from image to 3D ray

$$(x_0, y_0, z_0) = (u_0 - u_c, v_0 - v_c, f)$$

2. Rotate the ray by camera motion

$$(x_1, y_1, z_1) = \mathbf{R}_{01} (x_0, y_0, z_0)$$

$$(u_1, v_1) = (fx_1/z_1 + u_c, fy_1/z_1 + v_c)$$

Therefore:

$$\mathbf{H} = \mathbf{K}_0 \mathbf{R}_{01} \mathbf{K}_1^{-1}$$

Our homography has only 3,4 or 5 DOF, depending if focal length is known, same, or different.

This makes image registration much better behaved

Pairwise alignment

Procrustes Algorithm [Golub & VanLoan]

Given two sets of matching points, compute R

$$p_i$$
' = \mathbf{R} p_i with 3D rays
$$p_i = N(x_i, y_i, z_i) = N(u_i - u_c, v_i - v_c, f)$$
 $\mathbf{A} = \Sigma_{\mathbf{i}} p_i p_i$ ' $\mathbf{T} = \Sigma_{\mathbf{i}} p_i p_i^T \mathbf{R}^T = \mathbf{U} \mathbf{S} \mathbf{V}^T = (\mathbf{U} \mathbf{S} \mathbf{U}^T) \mathbf{R}^T$
 $\mathbf{V}^T = \mathbf{U}^T \mathbf{R}^T$
 $\mathbf{R} = \mathbf{V} \mathbf{U}^T$

Rotation about vertical axis

What if our camera rotates on a tripod? What's the structure of H?

Do we have to project onto a plane?

Full Panoramas

What if you want a 360° field of view?

Cylindrical projection

• Map 3D point (X,Y,Z) onto cylinder

$$(\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2 + Z^2}} (X, Y, Z)$$

Convert to cylindrical coordinates

$$(sin\theta, h, cos\theta) = (\hat{x}, \hat{y}, \hat{z})$$

Convert to cylindrical image coordinates

$$(\tilde{x}, \tilde{y}) = (f\theta, fh) + (\tilde{x}_c, \tilde{y}_c)$$

Cylindrical Projection

Inverse Cylindrical projection

$$\theta = (x_{cyl} - x_c)/f$$

$$h = (y_{cyl} - y_c)/f$$

$$\hat{x} = \sin \theta$$

$$\hat{y} = h$$

$$\hat{z} = \cos \theta$$

$$x = f\hat{x}/\hat{z} + x_c$$

$$y = f\hat{y}/\hat{z} + y_c$$

Cylindrical panoramas

Steps

- Reproject each image onto a cylinder
- Blend
- Output the resulting mosaic

Cylindrical image stitching

What if you don't know the camera rotation?

- Solve for the camera rotations
 - Note that a rotation of the camera is a translation of the cylinder!

Assembling the panorama

Stitch pairs together, blend, then crop

Problem: Drift

Vertical Error accumulation

- small (vertical) errors accumulate over time
- apply correction so that sum = 0 (for 360° pan.)

Horizontal Error accumulation

can reuse first/last image to find the right panorama radius

Full-view (360°) panoramas

Spherical projection

Map 3D point (X,Y,Z) onto sphere

$$(\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2 + Y^2 + Z^2}} (X, Y, Z)$$

- Convert to spherical coordinates $(\sin \theta \cos \phi, \sin \phi, \cos \theta \cos \phi) = (\hat{x}, \hat{y}, \hat{z})$
- Convert to spherical image coordinates $(\tilde{x}, \tilde{y}) = (f\theta, fh) + (\tilde{x}_c, \tilde{y}_c)$

 \tilde{y} \tilde{x} spherical image

Spherical Projection

Inverse Spherical projection

$$\theta = (x_{sph} - x_c)/f$$
 $\varphi = (y_{sph} - y_c)/f$
 $\hat{x} = \sin \theta \cos \varphi$
 $\hat{y} = \sin \varphi$
 $\hat{z} = \cos \theta \cos \varphi$
 $x = f\hat{x}/\hat{z} + x_c$

3D rotation

Rotate image before placing on unrolled sphere

Full-view Panorama

Other projections are possible

You can stitch on the plane and then warp the resulting panorama

What's the limitation here?

Or, you can use these as stitching surfaces

But there is a catch...

Cylindrical reprojection

top-down view

Focal length – the dirty secret...

Image 384x300

f = 180 (pixels)

f = 280

f = 380

What's your focal length, buddy?

Focal length is (highly!) camera dependant

Can get a rough estimate by measuring FOV:

- Can use the EXIF data tag (might not give the right thing)
- Can use several images together and try to find f that would make them match
- Can use a known 3D object and its projection to solve for f
- Etc.

There are other camera parameters too:

Optical center, non-square pixels, lens distortion, etc.

Distortion

Radial distortion of the image

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Radial distortion

Correct for "bending" in wide field of view lenses

$$\hat{r}^2 = \hat{x}^2 + \hat{y}^2$$

$$\hat{x}' = \hat{x}/(1 + \kappa_1 \hat{r}^2 + \kappa_2 \hat{r}^4)$$

$$\hat{y}' = \hat{y}/(1 + \kappa_1 \hat{r}^2 + \kappa_2 \hat{r}^4)$$

$$x = f\hat{x}'/\hat{z} + x_c$$

$$y = f\hat{y}'/\hat{z} + y_c$$

Use this instead of normal projection

Polar Projection

Extreme "bending" in ultra-wide fields of view

$$\hat{r}^2 = \hat{x}^2 + \hat{y}^2$$

 $(\cos\theta\sin\phi,\sin\theta\sin\phi,\cos\phi) = s(x,y,z)$

uations become

$$x' = s\phi \cos \theta = s\frac{x}{r} \tan^{-1} \frac{r}{z},$$

$$y' = s\phi \sin \theta = s\frac{y}{r} \tan^{-1} \frac{r}{z},$$

Camera calibration

Determine camera parameters from *known* 3D points or calibration object(s)

- internal or intrinsic parameters such as focal length, optical center, aspect ratio: what kind of camera?
- 2. external or extrinsic (pose) parameters: where is the camera in the world coordinates?
 - World coordinates make sense for multiple cameras / multiple images

How can we do this?

Approach 1: solve for projection matrix

Place a known object in the scene

- identify correspondence between image and scene
- compute mapping from scene to image

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$

Direct linear calibration

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$

Solve for Projection Matrix ∏ using least-squares (just like in homework)

Advantages:

- All specifics of the camera summarized in one matrix
- Can predict where any world point will map to in the image

Disadvantages:

- Doesn't tell us about particular parameters
- Mixes up internal and external parameters
 - pose specific: move the camera and everything breaks

Approach 2: solve for parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point (x'_c, y'_c), pixel size (s_x, s_y)
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

$$\boldsymbol{\Pi} = \begin{bmatrix} -fs_x & 0 & x'_c \\ 0 & -fs_y & y'_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{3x3} & \mathbf{0}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3x3} & \mathbf{T}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix}$$
intrinsics
projection
rotation
translation

Solve using non-linear optimization

Multi-plane calibration

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online!
 - Intel's OpenCV library: http://www.intel.com/research/mrl/research/opencv/
 - Matlab version by Jean-Yves Bouget:
 http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
 - Zhengyou Zhang's web site: http://research.microsoft.com/~zhang/Calib/

Setting alpha: simple averaging

Alpha = .5 in overlap region

Setting alpha: center seam

Distance Transform bwdist

Alpha = logical(dtrans1>dtrans2)

Setting alpha: blurred seam

Distance transform

Alpha = blurred

Simplification: Two-band Blending

Brown & Lowe, 2003

- Only use two bands: high freq. and low freq.
- Blends low freq. smoothly
- Blend high freq. with no smoothing: use binary alpha

2-band "Laplacian Stack" Blending

Low frequency ($\lambda > 2$ pixels)

High frequency (λ < 2 pixels)

