More Mosaic Madness

© Jeffrey Martin (jeffrey-martin.com)
CS194: Image Manipulation \& Computational Photography with a lot of slides stolen from Steve Seitz and Rick Szeliski Alexei Efros, UC Berkeley, Fall 2018

Spherical Panoramas

See also: Time Square New Years Eve http://www.panoramas.dk/fullscreen3/f1.html

All light rays through a point form a ponorama
Totally captured in a 2D array -- $\boldsymbol{P}(\boldsymbol{\theta}, \boldsymbol{\phi})$
Where is the geometry???

Homography

A: Projective - mapping between any two PPs with the same center of projection

- rectangle should map to arbitrary quadrilateral
- parallel lines aren't
- but must preserve straight lines
- same as: project, rotate, reproject
called Homography

$$
\underset{\mathbf{p}}{\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]}=\underset{\mathbf{H}}{\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
$$

To apply a homography \mathbf{H}

- Compute p'=Hp (regular matrix multiply)
- Convert p' from homogeneous to image coordinates

Rotational Mosaics

Can we say something more about rotational mosaics? i.e. can we further constrain our H ?

SD \rightarrow 2D Perspective Projection

$$
\begin{gathered}
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right) \\
{\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right] \sim\left[\begin{array}{c}
U \\
V \\
W
\end{array}\right]=\left[\begin{array}{ccc}
f & 0 & u_{c} \\
0 & f & v_{c} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c}
\end{array}\right]} \\
\mathrm{K}
\end{gathered}
$$

3D Rotation Model

Projection equations

1. Project from image to 3D ray

$$
\left(x_{0}, y_{0}, z_{0}\right)=\left(u_{0}-u_{c}, v_{0}-v_{c}, f\right)
$$

2. Rotate the ray by camera motion $\left(x_{1}, y_{1}, z_{1}\right)=\boldsymbol{R}_{01}\left(x_{0}, y_{0}, z_{0}\right)$

3. Project back into new (source) image

$$
\left(u_{1}, v_{1}\right)=\left(f x_{1} / z_{1}+u_{c} f y_{1} / z_{1}+v_{c}\right)
$$

Therefore:

$$
\mathbf{H}=\mathbf{K}_{0} \mathbf{R}_{01} \mathbf{K}_{1}^{-1}
$$

Our homography has only 3,4 or 5 DOF, depending if focal length is known, same, or different.

- This makes image registration much better behaved

Pairwise alignment

Procrustes Algorithm [Golub \& VanLoan]
Given two sets of matching points, compute R

$$
\begin{aligned}
& p_{i}^{\prime}=\boldsymbol{R} p_{i} \quad \text { with 3D rays } \\
& \quad p_{i}=N\left(x_{i}, y_{i}, z_{i}\right)=N\left(u_{i}-u_{c}, v_{i}-v_{c}, f\right) \\
& \boldsymbol{A}=\Sigma_{\mathbf{i}} p_{i} p_{i}{ }^{T}=\Sigma_{\mathbf{i}} p_{i} p_{i}{ }^{T} \boldsymbol{R}^{T}=\boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{T}=\left(\boldsymbol{U} \boldsymbol{S} \boldsymbol{U}^{T}\right) \boldsymbol{R}^{T} \\
& \boldsymbol{V}^{T}=\boldsymbol{U}^{T} \boldsymbol{R}^{T} \\
& \boldsymbol{R}=\boldsymbol{V} \boldsymbol{U}^{T}
\end{aligned}
$$

Rotation about vertical axis

What if our camera rotates on a tripod?
What's the structure of H ?

Do we have to project onto a plane?

Full Panoramas

What if you want a 360° field of view?

Cylindrical projection

- Map 3D point (X,Y,Z) onto cylinder

$$
(\hat{x}, \hat{y}, \hat{z})=\frac{1}{\sqrt{X^{2}+Z^{2}}}(X, Y, Z)
$$

- Convert to cylindrical coordinates

$$
(\sin \theta, h, \cos \theta)=(\hat{x}, \hat{y}, \hat{z})
$$

- Convert to cylindrical image coordinates

$$
(\tilde{x}, \tilde{y})=(f \theta, f h)+\left(\tilde{x}_{c}, \tilde{y}_{c}\right)
$$

Cylindrical Projection

Inverse Cylindrical projection

$$
\begin{aligned}
\theta & =\left(x_{c y l}-x_{c}\right) / f \\
h & =\left(y_{c y l}-y_{c}\right) / f \\
\hat{x} & =\sin \theta \\
\widehat{y} & =h \\
\widehat{z} & =\cos \theta \\
x & =f \hat{x} / \hat{z}+x_{c} \\
y & =f \hat{y} / \hat{z}+y_{c}
\end{aligned}
$$

Cylindrical panoramas

Steps

- Reproject each image onto a cylinder
- Blend
- Output the resulting mosaic

Cylindrical image stitching

What if you don't know the camera rotation?

- Solve for the camera rotations
- Note that a rotation of the camera is a translation of the cylinder!

Assembling the panorama

Stitch pairs together, blend, then crop

Problem: Drift

Vertical Error accumulation

- small (vertical) errors accumulate over time
- apply correction so that sum $=0$ (for 360° pan.)

Horizontal Error accumulation

- can reuse first/last image to find the right panorama radius

Full-view (360 ${ }^{\circ}$) panoramas

Spherical projection

- Map 3D point (X,Y,Z) onto sphere

$$
(\hat{x}, \hat{y}, \hat{z})=\frac{1}{\sqrt{X^{2}+Y^{2}+Z^{2}}}(X, Y, Z)
$$

- Convert to spherical coordinates $(\sin \theta \cos \phi, \sin \phi, \cos \theta \cos \phi)=(\hat{x}, \hat{y}, \hat{z})$
- Convert to spherical image coordinates

$$
(\tilde{x}, \tilde{y})=(f \theta, f h)+\left(\tilde{x}_{c}, \tilde{y}_{c}\right)
$$

Spherical Projection

Inverse Spherical projection

$$
\begin{aligned}
\theta & =\left(x_{s p h}-x_{c}\right) / f \\
\varphi & =\left(y_{\text {sph }}-y_{c}\right) / f \\
\hat{x} & =\sin \theta \cos \varphi \\
\widehat{y} & =\sin \varphi \\
\widehat{z} & =\cos \theta \cos \varphi \\
x & =f \hat{x} / \hat{z}+x_{c} \\
y & =f \hat{y} / \hat{z}+y_{c}
\end{aligned}
$$

3D rotation

Rotate image before placing on unrolled sphere

Full-view Panorama

Other projections are possible

You can stitch on the plane and then warp the resulting panorama

- What's the limitation here?

Or, you can use these as stitching surfaces

- But there is a catch...

Cylindrical reprojection

top-down view

Image 384×300

Focal length - the dirty secret...

$f=180$ (pixels)

$f=\mathbf{2 8 0}$

$\mathrm{f}=\mathbf{3 8 0}$

What's your focal length, buddy?

Focal length is (highly!) camera dependant

- Can get a rough estimate by measuring FOV:

- Can use the EXIF data tag (might not give the right thing)
- Can use several images together and try to find f that would make them match
- Can use a known 3D object and its projection to solve for f
- Etc.

There are other camera parameters too:

- Optical center, non-square pixels, lens distortion, etc.

Distortion

No distortion

Pin cushion

Barrel

Radial distortion of the image

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Radial distortion

Correct for "bending" in wide field of view lenses

$$
\begin{aligned}
\widehat{r}^{2} & =\widehat{x}^{2}+\widehat{y}^{2} \\
\widehat{x}^{\prime} & =\widehat{x} /\left(1+\kappa_{1} \widehat{r}^{2}+\kappa_{2} \widehat{r}^{4}\right) \\
\widehat{y}^{\prime} & =\widehat{y} /\left(1+\kappa_{1} \widehat{r}^{2}+\kappa_{2} \widehat{r}^{4}\right) \\
x & =f \widehat{x}^{\prime} / \widehat{z}+x_{c} \\
y & =f \widehat{y}^{\prime} / \widehat{z}+y_{c}
\end{aligned}
$$

Use this instead of normal projection

Polar Projection

Extreme "bending" in ultra-wide fields of view

$\widehat{r}^{2}=\widehat{x}^{2}+\widehat{y}^{2}$
$(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)=s(x, y, z)$
uations become

$$
\begin{aligned}
& x^{\prime}=s \phi \cos \theta=s \frac{x}{r} \tan ^{-1} \frac{r}{z}, \\
& y^{\prime}=s \phi \sin \theta=s \frac{y}{r} \tan ^{-1} \frac{r}{z},
\end{aligned}
$$

Camera calibration

Determine camera parameters from known 3D points or calibration object(s)

1. internal or intrinsic parameters such as focal length, optical center, aspect ratio: what kind of camera?
2. external or extrinsic (pose) parameters: where is the camera in the world coordinates?

- World coordinates make sense for multiple cameras / multiple images

How can we do this?

Approach 1: solve for projection matrix

Place a known object in the scene

- identify correspondence between image and scene
- compute mapping from scene to image

$$
\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] \cong\left[\begin{array}{llll}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & m_{23}
\end{array}\right]\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

Direct linear calibration

$$
\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] \cong\left[\begin{array}{llll}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & m_{23}
\end{array}\right]\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

Solve for Projection Matrix Π using least-squares (just like in homework)

Advantages:

- All specifics of the camera summarized in one matrix
- Can predict where any world point will map to in the image Disadvantages:
- Doesn't tell us about particular parameters
- Mixes up internal and external parameters
- pose specific: move the camera and everything breaks

Approach 2: solve for parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point $\left(x_{c}^{\prime}, y_{c}^{\prime}\right)$, pixel size $\left(s_{x}, s_{y}\right)$
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$
\mathbf{X}=\left[\begin{array}{c}
s x \\
s y \\
s
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\mathbf{\Pi X}
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations
- Solve using non-linear optimization

Multi-plane calibration

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online!
- Intel's OpenCV library: http://www.intel.com/research/mr//research/opencv/
- Matlab version by Jean-Yves Bouget: http://www.vision.caltech.edu/bouguetj/calib doc/index.html
- Zhengyou Zhang's web site: http://research.microsoft.com/~zhang/Calib/

Setting alpha: simple averaging

Alpha $=.5$ in overlap region

Setting alpha: center seam

Alpha $=$ logical(dtrans1>dtrans2)

Setting alpha: blurred seam

Distance
transform

Alpha = blurred

Simplification: Two-band Blending

Brown \& Lowe, 2003

- Only use two bands: high freq. and low freq.
- Blends low freq. smoothly
- Blend high freq. with no smoothing: use binary alpha

2-band "Laplacian Stack" Blending

Low frequency ($\lambda>2$ pixels)

High frequency ($\lambda<2$ pixels)

Linear Blending

 fid

2-band Blending

\qquad

