CS263-Spring 2008
Topic 1. The Lambda Calculus

Section 2.1: Combinatory Arithmetic

Last edited 29 January 2008

I A Quick Review

The combinators J, Sand K
To begin with, we single out three combinators, from which we will generate all others.
Initially, by a combination we understand either
aJ, an Sor akK, forming the basic constants, or
aletter set aside to be avariable, or
acompound expression of the form A[B], where
A and B are previously obtained combinations,

A combination without variablesis also called acombinator. Intuitively, acombinator is some kind of function F which

CS263-2.1edit.nb

when applied to arguments, asin F[X1] [X2] [X3] ..{Xn], afectsatransformation. To give somekind of exact
"meaning" to the combinators we use replacement rules.

I crules = {J[x_1->x, S[IX_1[y_1[z_1->Xx[z]1[y[z]1], K[X_1[y_1 =»X};
We have to do some examples, however, to see what these rules accomplish in giving meaning to all combinations.
Note: Asan aid to memory, we might nickname the basic combinators as follows:

J isthe Joker;

Sisthe Slider; and

KistheKiller.
Warning: The combinitor J isusually written as| .

But Mathematica has a specia rolefor | which does not concern the current discussion.

Functional abstraction

Given alist of variables and a combination, we create a combinator by removing variables one at a time, starting with the
right-most variable.

ToC[vars_, conb_]:=Fold[rm conb, Reverse[vars]];

rmiv_, v_]:=1J;

rm[f _[v_], v_]/; FreeQ[f, v]:=1;
rmh_, v_1 /; FreeQrh, v]:=K[h];

rmif _[g_1, v_1:=S[rm[f, vi1[rmlg, v1I;

Warning: In Mathematica, Fr eeC means "to be free of". Do not confuse this with "free and bound variables".

| ?FreeQ

FreeQ[expr, form| yields True if no
subexpression in expr matches form, and yields False otherwise.
FreeQ[expr, form, levelspec] tests only those parts of expr on levels specified by levelspec. >

Note: Intraditional notation TOC[{x, y, z}, A] iswrittenasax Ay axz. A
Some examples.

| ToCrix}, AIBIX11[CIx]1]

| SiSIKI(AI][B]][C]

| ToC[{x}, A[B[C[x]11[D[x]1]
| SISIKIA]][SIK[B]][C]]1][J]
I
|

ToCL{x, y}, AIB[X1[yl1[CIx][yll]
S[S[K[S]] [S[K[S[K[A]]]][B]]][C]

CS263-2.1edit.nb

| SISIKISITISIKISIK[AII11[BI11[CI[X1[y] //. crules
|l ABIx][y]]ICIX][y]]

| ToCrix, y, z}, A[BIy11ICIx]1[z11]
| SIKISISIKIS]][SIKIK]][S[KIA]][B]]1]]1]][SIK[K]][C]]

S[K[SISIK[S]] [SIK[KI]T[SIK[AIT[BI11111[SIKIKITI[CI]1[Xx][y]llz] //.
crul es

|l ABly]]ICIx][z]]

Self-application and fixed points

| comb = ToC[{x}, FIx[x]1]
| SIKIFI1[S[3113]]

| test =conb[conb]
I SIKIFIT(SIIT[ITIISIKIFII[S[IT[ITT]

Do[test =test /. crules, {12}];
t est

| FIFIFIFISIKIFIT[S[II[ITIISIKIFII[SIIT[IITIITT]
This calculation showsthat
Every function has a fixed point!
Thismeansthat given F, we canfind aP suchthat P =» F[P] by thecr ul es.
And, moreover, we see that
Thereduction of a combinator need not stop!
The problem hereistrying to know when reductions will stop.
This also showsthat the notion of function
embodied in combinatorsisnot the

same asisfamiliar in mathematical usage.

Here is the general fixed-point combinator :

| Y=ToCr{f}, ToCr{x}, f[x[x111[ToC[{x}, f[x[x]11]11]
| SISISIKISITIKITIKISIIT[IT]11][SISIKIS]T[KITKIS[IT[I]]]]

CS263-2.1edit.nb

| test = Y[F]
I S[S[S[K[S]][K]][K[S[IT[I]TTT[SISIK[SI] [KIT[K[S[IT[I]]1]I[F]

| test =test /. crules
| FISIKIFII(S[IT 3T ISIKIFITISII[I]I]]

I Doing Arithmetic

The Church numerals

m Somedefinitions
Surprisingly enough, one can do integer arithmetic with combinators.
Here are the basic definitions proposed by Alonzo Church.

zero = K[JJ;

succ = S[S[K[S]]1[K]1];

plus = S[K[S]][SIK[S[K[S]11][SIK[KI1II;
times = S[K[S]] [KI;

power = S[K[S[J1]11I[KI;

OK. Very tidy. But what do they really mean?

m Zeroand itssuccessors
Let's start at the beginning.

| num=zero
I K37

| test = num[fi(x]
I Kapofix
That looks familiar. And, after reduction:

| test =test //. crules

| x
So! Themeaning of zer o [f] [x] isto cancel thef .
What about successors?

CS263-2.1edit.nb

| num=succnum
| SISIKI[SI][K]]I[K[I]]

| test = num[f][x]
| SISIKISITIKITIK[ITT[f][x]
| test =test //. crules
| fix]
Let' stry alonger one.

num= succ [succ [succ [succ [succ [succ[zero]]11]111;
test = num[f] [x];
test =test //. crul es

| fof of of (f [F(x71010]
It looks like the meaning of the 6th successor of zer o iteratesthef six times.
How can we prove agenera theorem? This calculation might help.

| succnirfiix1 /7. crules

[finifx))
So, we know that zer o [f] iteratesf notimes;
if, n[f] iteratesf n-times, thensucc [n] [f] iteratesf (n + 1) -times;
hence, the nth Church numeral iterates a function n-times.

m Numerating the numerals
Mathematica supports integer arithmetic.
So, let ustry arecursive definition from the Mathematica integers to the Church numerals.

cnum[0] : = zero;
cnum[n_] : = succ[cnum[n -1]7;

cnum[11]

|
SISIK[S]] [K]
SISIKI
|
|

[K
K[S]]
S[S
cnum[11]([f] //. crules

SIKIfTT[SIKIF 1] [SIK[f T [S[KIf]
SIKIf 1T [SIKIF T [SIK[f]]

cnum[11][f1[x] //. crules
| fofofof Of OF OF OFOFCFCF[XDD00001011])

CS263-2.1edit.nb

L ooks good!

m Doing addition
First, asmall test.

| cnumi4y /7. crules
I SISIK[SIT[KIT[SISIK[S]][K]][S[SIK[S]][K]][SISIK[SIT[KIT[K[ITIIT]

| test = plus[cnum[2]] [chum[2]] //. crul es
S[S[K[S]] [SIK[K]] [S[S[K[S]][K]][S[SIK[S]][K]][K[ITIIIITIL
S[S[K[S]] [K]][S[SIK[S]] [K]][K[JI]]T]]

Ouch! The answers are not the same! We need some tests.
The general situation will be discussed |ater.
| test[f1[x]//. crules
fofofof x110)
| plus[nitm[f1[x] /7. crules
| nif1mifix]
Ah, that is beginning to make sense: first iterate f for ir times, then pileon f iterated n times.
We can see how that, for Church numerals, we are alway going the have the same resultsin reducing
pl us[cnum[n]] [cnum[m]][f][x] and cnum[n + m] [f] [X],
if n and mare (standard) integers.
So, pl us indeed works like addition on Church numerals.

Hereis atest:

pl us[cnum[2]] [chum[3]][f]1[x] //. crul es
cnum[2 +3][f1[x] //. crules

b fofof0f[fix1777]
I f0fffifixizngg

m Doing multiplication and exponentiation
Wetry out at once the general pattern.

| times[ni[mi[f1[x]//. crules

| nimif170x]
The part m[f] replicatesf for mtimes; thenthen [m[f]] replicatesthat n times.
Altogether, then, we get an iteration n - rtimes.

Now, try power .

CS263-2.1edit.nb

| pover [n1[m] //. crules

| min
Thisis somewhat abstract, as the numbers are operating on numbers.
Herethe n-fold iterator isitself iterated rr times.

That produces an iterator of sizen™.

Some call this higher-order programming.

Here are some tests.

power [cnum[2]] [chum[3]1][f]1[x] //. crules
cnum[2®] [f][x] //. crules

Ifof of of of 0f 0F (F [x0000000)
Ifof of of of 0F 0F 0F [x0070700)

power [chum[3]] [chum[2]][f][x] //. crules
cnum[3?] [f 1[x] //. crules

I fof of of of of 0F 0F 0F [xT0700707)
I fofof of (f of (F Cf [F Ix71000007)

m A problem
Challenge: Find the combinator for pr ed.
Conjecture: Thereisno very short one.

Higher-order iteration

m Creating structure

First we need to simulate pairs of objects by combinators, so we can then compute two values at the same time.

| pair =ToCr{x, vy, z}, z[xI[y]]
| SISIKISI]ISIKIKI][SIKIS]][SIKIS[I]]][KI1]]][KIK]]

left =ToC[{x, Yy}, X]
right = ToC[{X, Yy}, VY]
| K

| K137

CS263-2.1edit.nb

These new names may seem redundant.
But it does not hurt to have extra namesto remind
you what the combinators are meant to do.
Later, we may want to call themt rue andf al se!
Hereisatest:

| pair(al[by /7. crules

| S(S131(K[al]](K[b]]

pair[a][b][left] //. crules

pair [a][b]l[right] //. crul es
| a
|l b

m Defining predecessors

Theideanow isto start with apair (<0, 0).

Then use ashift operation (p, q) » (p + 1, p).

Then, iterating the shift n-times on the start pair leaves uswith (n, n - 1).

shift = (ToC[{p}, pair [succ[p[left]]][p[left]]l] //. crules)
pred = (ToC[{n}, n[shift][pair [zero][zero]][right]] //. crules)
I S[S[K[S[S[K[S]] [SIK[K]] [S[K[S]][S[K[S[I]]] [K]
S[IK[S[S[K[S]][K]T]T[S[I][KIKITT]I[S[I] [K[K]]]

S[S[S[J] [K[S[S[K[S[S[K[S]] [SIK[K]T[S[K[S]][SIK[S[I]TT[KITT]]IK[K]T]][
SIK[S[S[K[SI] [KITT][S[I]IK[KITTTT[SITIKIKITTTTTIL
KISIS[IT[KIK[ITTT T [KIK[ITTTTT] [K[K[IT]]

Hereisthe test.

cnum[9] [f]1[x] //. crules
| foffofofof CFCFCF[X310010170])
| frffofof of CFCFCF[X210100171]

Hereis acheck of equality of numerals.

I pred[cnum[10]][f1[x] //. crul es

| (pred[cnum[10]] //. crul es) == (chum[9] //. crul es)
| True

CS263-2.1edit.nb

m Testing numerals
We can use the same idea employed for predecessor to define a combinater that tests a numerable for being zero.

shiftl =ToC[{p}, pair [p[right]][right]] //. crules
zeroQ=ToC[{n}, n[shiftl][pair[left][right]][left]] //. crules

I S[S[K[S[SIK[S]][SIK[K]] [SIK[S]] [SIK[S[I]T][K]TITT[KIK]TTT[S[I][K[K[ITITTTI[
KIK[ITT]

I S[S[S[J] [K[S[S
[

pair [a][b] [zeroQ[zero]] //. crul es
pair [a] [b] [zeroQ[cnum[12]]] //. crul es

| a
|l b
In other words, acombination pai r [a] [b] [zer oQ[n]] means
if the numeral n is zero, choose a, else choose b.
Do you see now why | might want to usethe namest r ue andf al se?

m Aother problem
Problem: Find acombination pai r [a] [b] [equal Q[n] [m]] which means
if the numeral n isequal to the numerable m, choose a, else choose b.

m Equality
Theideaisto subtract each of two numbers from each other to seeif both answersarezer o.

I equal Q= ToC[{n, m}, pair [zeroQ[m[pred] [n]]][right][zeroQ[n[pred][m]]1]]

S[S[K[S]J[S[SIK[S]] [
SIK[S[K[S[S[K[S]] [S[K[K]] [S[K[S]][SIK[S[I]ITIKITTT]IK[KITITT]I[
S[K[S[K[S[S[S[J] [K[S[SIK[S[S[K[S]][SIK[K]][SIK[S]][
SIKIS[ITITIKITTTT IKIKITT T [S[IT[KIK[ITTTTTL
KIKTITTTT 1] IK[SIS[IT [KIK] T [KIK[ITTTTTT[KIKITTTT] 1
SIK[S[S[I] [K[pred]]11T[K]T]T] [KIK[K[ITTTT1]]T
SIK[S[K[S[S[S[J] [K[S[S[K[S[S[K[S]][SIK[K]][SIK[S]T[SIK[S[ITIT[KITIITI
KIKITTTIS[IT[KIK[ITTT T [KIK[ITTTTTTL
KIS[S[IT [KIKITT[KIK[ITTTTTT[KIKIT11T][S[I][K[pred]]]]

Hereisthetest. Note that even numerals of a moderate size may take along time to give the answer.

| Ti mi ng[pair [a] [b][equal Q[chum[3]] [cnum[3]]] //. crul es]
| (0.029853, a}

10

CS263-2.1edit.nb

More general recursion

m Thebigproblem

Can combinators be used to define all recursive functions more generally?
And what will this mean about undecidability of questionsinvolving

combinators?

m Primitiverecursivefunctions

Using atemporary notation for functions of several variables of integersin the ordinary sense, the primitive recursive

functions are gererated as follows:
There are given starting functions:

nul | [i] ==
succli]=1i+1
proj ' [Xi, X2, X3, .., Xp] =X; provided i <n

New functions can be obtained from old functions by composition:

h[X11 X21 X31 cop Xn ==
OIf1[X1, X2, X3, . Xnl, f2[X1, X2, X3, . Xnl,

New functions can be obtained from old function by primitive recursion:

h[0, X1, X2, X3, ., Xnl = f[X1, X2, X3, ., Xnl
h[i +1, X1, X2, X3, .. Xp] =
g[|, h['! Xll X21 X3! oor Xn], Xl! X21 X3| ooy Xn]

m Simulation by combinators

The starting functions are easy.
Wejust haveto definenul | asK[zero].
We dready havesucc.

Thevarious pr oj [are defined by variable elimation.

cer TmlX1, X2, X3, . Xnll

Composition — even for many variables — is also defined by variable elimination.

Finally, primitive recursion takes a little more thought.
Let'stry this special case, where F and C are given, and Histo be found:

H[O] [x] = F[x]
H[succ [n1] [x] == G[n] [H[N] [x]] [X]

11

| rec=ToCith, n, x}, pair [F[x]]1[Glpred[n]][h[pred[n]][x]][x]][zeroQ[n]]]

H== ToC[{n, x}, pair [F[x]][G[pred[n]][H[pred[n]][x1][x]][zeroQ[n]]]

H[n] [x] = pair [F[x]1][G[pred[n]] [H[pred[n]1][x]1]1[x]][zeroQ[n]]

Clearly, it is sufficient to solve:
Thus, it is sufficient to solve:
So, make this definition:

CS263-2.1edit.nb

g enlan —
e I —
- - 8 -
¥ 2D X o S o —
Y D2 —¥ ¥ 3 DR
N — o — e — — wn +— X —
e 7 SR = <= =
SJKK]]]]] .S —_— — .M_
DOXX o— T n—- =
KK]]MHMWKH N
2SS = w 0 X al
N R 7, R V2 R c n= =
N — — — N — —_ — D

— — — —_— — — — o — X
Q_J.V[S[KQJ.M]]S[] O]S]H
— o — —_ = e — — —
]]]]]]]]]]] < m N ¥ m =
¥ O —0N —X¥ N X ¥ — — — T L
i 7N P e 0N — X (&) Y N X —
2= - - — . —
— — () =X) — — —) X — "] .= N — X —
N — =X X e 8 = = o= 0
S SN == — X — £ © —x - =
—X XZ= o o= 5 ¢ W o=
Y 0nl o¥X502 § 3 g L
2 wK mmsz .w...n_lb S — 0N X
< 9 Do 22 alle g s S WX 0 X
— — X a XY — — T e X OO —
A 8 3 Shn-g
— X — e 2 2 3 o e
— wn (7 e — y— X) — X —
— W - 0N X XY m — —_ s =
— 0, % 25 s 2 2 b X — 0 X
L X — (V)] — S S.L“ W
— i) < = A
S o .= E WX 0o
K i w S S QO =
o X & mp = X0 0o
— W I = : o n un OO
%) T = o @©@ U O o
4 =) o 3 L = : = =
2 c O Q
= 4 X g S g -
o] > mum o
© 5 £ 9§ &
T m O T

Aswerecall, Church's definitions were " structural” or " conceptual” — which made them easy to understand:

Warning! Do not try toreduce Y[rec] by itself! (Why?)

m Addition and multiplication reconsidered

CS263-2.1edit.nb

plus[n][m] [f]1[x] //. crul es
times[n][m] [f][x] //. crules

I nifiimifixy]
| nimifigix]

But, stop to think: addition isiterated succesion and multiplication is just iterated addition. So consider these definitions:

pl us
| S[JI] [K[S[S[K[S]][K]]]]

I sums= ToC[{n, m}, n[succ][m]]

| S[K[S]][SIK[S[K[S]]]][SIK[K]]]]
Ha' That is shorter than Church'sl And it works well:

| sumicnum[71] [cnum[4]][f][x] //. crules
Dot ofof of of of cf (f [f (fIx77700111777

| (sum[cnum[7]][cnum[4]] //. crul es) =cnum[11]
| True

OK. Let'stry out multiplication.

prod = ToC[{n, m}, n[sum[m]] [zero]]

tinmes
I S[S[K[S]] [S[S[K[S]] [K]] [K[S[I] [K[S[S[K[S]][KIT]11]]1] [K[K[K[I]]]]
I siKis]]IK]

Ah. Thistime Church wins hands down. But the new definition does work.

I prod[cnum[7]] [chum[2]][f]1[x] //. crul es
I frffofof ff e Cfof (f (F [[F [F[xT701010101011]

| (prod[cnum[7]] [cnum[2]] //. crul es) = chum[14]
| True

But the two methods give different answers when not applied to arguments.

| (prod[cnum[7]][cnum[2]] //. crul es) = (times[cnum[7]] [chum[2]] //. crul es)

CS263-2.1edit.nb 13

(prod[cnum[7]] [cnum[2]][f] //. crules) =
(times[cnum[7]][cnum[2]][f] //. crul es)

SIKIfI11
SIKIfTT[SIKIFTT [SIKIf T [SIKIF 1] [SIK[F]TISIKIf T [SIKIF 1] [SIKIfITISIKIfTT]
SIKIfTT[SIKIF I ISIKIFTTISIKIFTT[ITT11711111711] =
SIKISIKIfITISIKIF 11 [T [SIKISIKIF 1] [SIKIFIT[ITTTTT
SIK[SIKIfITISIKIFITITTITTI
SIKISIKIfJT[SIKIf 11 [T [SIKISIKIFTTISIKIFIT[ITTTTI
SIKISIKIfITISIKIF 111311 [SIKISIKIF T ISIKIFIT1IT111T11I171111]

(prod[cnum[7]]1[cnum[2]][f1[x] //. crules) =
(times[cnum[7]]1[cnum[2]1]1[f]1[X] //. crul es)

| True

m Partial recursivefunctions

In his fundamenta work on Recursive Function Theory, S.C. Kleene added to the schemes for defining the primitive
recursive functions the minimalization scheme, which provides a version of search:

Given afunctionf [n], search for theleast integer n suchthatf [n] == 0.
Combining this with the other schemes givesisthe partial recursive functions.
Warning! Infindingtheleastinteger n suchthat f [n] == 0,
besureall thepreviousvaluesf [0], f [1], f [2], .., f [n-1] aredefined!
Moreover, Kleene showed that only one search is necessary; that is, it is sufficient to compute functions:
G[least y: F[X1, X2, X3, .. Xpn, Y] =0]
where F and G are given primitive recursive functions (which are always well defined and not partial).

Kleene's Normal Form Theorem can perhaps best understood by showing that partial recursive
functions are the same as those computed by Turing Machine Programs.

So, how can we program in combinators to search for
theleast integer n suchthatf [n] == 0?

m Doingthesearch
It would be nice if we could at once define an operator M[f] with the meaning that itsvalueis
thel east ysuchthat f [y] == zero.
But it is perhaps alittle hard to see directly.
A dightly easier question (though at first it might seem harder) isto define M[f] [n] meaning
theleast y >nsuchthat f [y] == zero.

This operator has a quick "procursive" definition.

14 CS263-2.1edit.nb

M[f 1 [n] == pair [n] [M[f][succ[n]]][zeroQ[f [n]]]
First get this combinator:

I H=ToC[{m f, n}, pair [n][m[f][succ[n]]][zeroQ[f [Nn]1]]]

S[S[K[S]] [S[K[S[K[S]T]] [

S[K[S[K[S[S[SIK[S]] [SIK[K]] [SIK[S]][SIK[S[ITT]T[KITITT[KIKITTTIITI[
S[S[K[S]] [SIKI[S[K[S]]]][SIK[K]T]]] [KIK[S[S[K[S]][K]TTTIIT1]I
KISIK[S[S[S[J] [K[S[S[K[S[S[K[S]] [SIK[K]] [S[K[S]][SIK[S[ITTI[KIITI]I
KIKITTTIS[ITIKIK[ITTT T [KIK[ITTTTTTL

KISIS[IT KK TT [K[K[ITTTTT T [KIKIT1T]]

We then have the desired operator when we find an V such that: M= H[M] .

Thisworks, because the desired answer — given F —isM[F] [0].

