CS263-Spring 2008 Topic 2: Type Theory Section 5.1: Type Semantics I

Dana S. Scott Hillman University Professor (Emeritus) School of Computer Science Carnegie Mellon University

Visiting Professor EECS Visiting Scientist Logic & Methodology Program University of California, Berkeley

Last edited 19 February 2008

A set-theoretic interpretation of types

Restricting abstraction

When we introduced λ -abstraction in the models, it was pointed out that if Φ is a continuous operator, then $\lambda X \cdot \Phi(X)$ is the *largest set* $U \in \mathbb{P}$ such that $U[X] = \Phi(X)$ for all $X \in \mathbb{P}$. If we had known there was at least one set representing Φ this way, then we could have used this as the *definition*, bytaking a union. Then we could have proved: $\lambda X \cdot \Phi(X)[Y] = \Phi(Y)$.

But an *explicit formula* was given that not only gave *one such U* but also was the *largest*.

Note. To emphasize the above remark, suppose that $U[X] \subseteq \Phi(X)$ for all $X \in \mathbb{P}$. Then we showed that $U \subseteq \lambda X \cdot U[X] \subseteq \lambda X \cdot \Phi(X)$. So $\lambda X \cdot \Phi(X)$ is indeed the largest representative.

In turning next to a discussion of **types**, it will helpful to represent functions on **subsets** of \mathbb{P} — but with values in \mathbb{P} . An important example is $\mathbb{N} \subseteq \mathbb{P}$ (and remember we take $n = \{n\}$ for $n \in \mathbb{N}$). But, we will also consider smaller sets $\mathbb{M} \subseteq \mathbb{N} \subseteq \mathbb{P}$.

By definition we take $\lambda n \in \mathbb{M}$. X_n to be the largest set $U \subseteq \mathbb{N}$ such that

 $U[n] \subseteq X_n$ holds for all $n \in \mathbb{M}$.

Phrased this way, there certainly *are* such U because $U = \phi$ is a trivial choice. But, why is there a *largest*?

The answer is to take the *union* of all the U satisfying the displayed condition above. One of the Projects was to prove that under our definition of U[X] we have

$$\bigcup \{ U[Y] \mid U \in \mathbb{U} \} = (\bigcup \mathbb{U})[Y]$$

for any family of sets $\mathbb{U} \subseteq \mathbb{P}$ and any $Y \in \mathbb{P}$. That justifies the definition. (Why?)

Theorem. For any given system of sets X_n for $n \in \mathbb{M}$, we have $(\lambda n \in \mathbb{M}, X_n)[m] = X_m$ for all $m \in \mathbb{M}$.

Proof. Take, with an *m* given, as one of the sets in the union: $U = \{(\langle m \rangle, k) \mid k \in X_m\}$. Clearly, $U[m] = X_m$, while, for $n \neq m$, we have $U[m] = \phi$. Q.E.D.

Note. When $n \in \mathbb{N} \setminus \mathbb{M}$, because the λ -abstract is taken as *maximal*, we will have:

 $(\lambda n \in \mathbb{M} \cdot X_n)[m] = \mathbb{N}$, the largest set in \mathbb{P} .

A special case we need to use often is $M = \{0, 1, ..., n-1\}$. We introduce an *abbreviation*:

$$\langle \langle X_0, X_1, ..., X_{n-1} \rangle \rangle == \lambda i < n \cdot X_n$$

In other words, though we had *n*-tuples of elements of \mathbb{N} before, we also have to have *n*-tuples of elements of \mathbb{P} . They work out a little differently, however. In \mathbb{N} , we find $\langle i, j \rangle \neq \langle i, j, k \rangle$; but in \mathbb{P} , we have

$$\langle\langle X_0, X_1, \dots, X_{n-1}\rangle\rangle = \langle\langle X_0, X_1, \dots, X_{n-1}, \mathbb{N}\rangle\rangle = \langle\langle X_0, X_1, \dots, X_{n-1}, \mathbb{N}, \mathbb{N}, \dots\rangle\rangle.$$

Moreover, $\langle \langle X_0, X_1, ..., X_{n-1} \rangle \rangle [i] = X_i$, if i < n; but $\langle \langle X_0, X_1, ..., X_{n-1} \rangle \rangle [i] = \mathbb{N}$, if $i \ge n$.

Warning. There are *many different ways* of introducing *ordered pairs* into **P**.

In order to make a later task easier, we give one more definition of pairs.

$$[X, Y] = 2X \bigcup 2Y + 1 \text{ for } X, Y \in \mathbb{P}$$

$$1 \text{ st} = \lambda Z \cdot \{n \mid 2n \in Z\}$$

$$2 \text{ nd} = \lambda Z \cdot \{n \mid 2n + 1 \in Z\}$$

The *idea* here in defining [X, Y] is to put a *copy* of X on the *even integers* and a *copy* of Y on the *odd integers*. Clearly we are working with continuous and computable operators here and the key formulae about pairing are easy to prove:

Theorem. For all *X*, *Y*, $Z \in \mathbb{P}$ we have:

 $1 \operatorname{st}[[X, Y]] = X;$ $2 \operatorname{nd}[[X, Y]] = Y; \text{ and}$ $\lfloor 1 \operatorname{st}[Z], 2 \operatorname{nd}[Z] \rfloor = Z.$

We defined at least two notions of *cartesian product* for sets *in* \mathbb{P} . Now we use this pairing just defined for taking the products of *subclasses* of \mathbb{P} .

 $\mathbb{U} \times \mathbb{V} = \{ [X, Y] \mid X \in \mathbb{U} \& Y \in \mathbb{V} \} \text{ for } \mathbb{U}, \mathbb{V} \subseteq \mathbb{P} \}$

Note. Under this definition it follows that $\mathbb{P} \times \mathbb{P} = \mathbb{P}$. (Why?)

Types as equivalences

The *semantics for types* we will be using is based on a kind of *equivalence relations*.

A partial equivalence relation or PER is a binary relation

$\mathcal{R} \subseteq \mathbb{P} \times \mathbb{P}$

which is symmetric and transitive; that is, the implications

 $X \mathcal{R} Y \Rightarrow Y \mathcal{R} X$ and $X \mathcal{R} Y \& Y \mathcal{R} Z \Rightarrow X \mathcal{R} Z$

hold for all $X, Y, Z \in \mathbb{P}$.

And, in the above, we use this familiar *shorthand*:

$$X \mathcal{R} Y \Leftrightarrow \lfloor X, Y \rfloor \in \mathcal{R}$$

It is important to keep in mind that we are *not* assuming that *reflexivity* $X \mathcal{R} X$ holds for *all* $X \in \mathbb{P}$. Thus, the subset of \mathbb{P} given by $\{X \mid X \mathcal{R} X\}$ is being used a "*preliminary*" *subtype* of \mathbb{P} . However, keep in mind that the *whole type* is the relation \mathcal{R} .

For $X \in \mathbb{P}$ and \mathcal{R} a *PER*, we write $X : \mathcal{R}$ to mean $X \mathcal{R} X$.

And we read $X : \mathcal{R}$ as X is of type \mathcal{R} .

When $X \mathcal{R} Y$ we have, however, to think of X and Y as *equivalent representatives* of objects of type \mathcal{R} . In other words, the *same object* may have *many representations*.

Warning. Mathematicians often insist on having *uniquely determined* objects by introducing *equivalence classes* and *quotient sets*. One notation for this is as follows:

For $X : \mathcal{R}$, define $X/\mathcal{R} = \{Y \in \mathbb{P} \mid X \mathcal{R} Y\}$. Then

$$\mathbb{P}/\mathcal{R} = \{X/\mathcal{R} \mid X : \mathcal{R}\}$$

This is sometimes convenient, but we will not make much use of the idea here.

Of course, every subclass of $\mathbb{Q} \subseteq \mathbb{P}$ can be thought of as a type by defining:

$$X Id(\mathbb{Q}) Y \Leftrightarrow X = Y \in \mathbb{Q}$$

But, as we will find from examples, these may not be the most interesting types.

We note that $Id(\phi) = \phi$. But a slightly more interesting *PER* will often use is this one:

$$\perp = Id(\{\phi\})$$

The difference between $Id(\phi)$ and $Id(\{\phi\})$ is that $Id(\phi)$ being empty, there is no way to map *into* it. On the other hand $\phi: Id(\{\phi\})$, and so many operations map into this type $-e.g., K[\phi]$ ought to be a *good candidate*.

Type mappings

There is a very great variety of types — even among the *PERs*. To be able to explore them, we define a number of ways of constructing *new types from old*.

The prime reason we want to single out a specific kinds of type in this way is to have a guaranteed structure on our data.

Warning. From now on we will often say type instead of PER.

When, given two types \mathcal{A} and \mathcal{B} , we write $U : \mathcal{A} \to \mathcal{B}$ to mean that U represents an operator mapping objects of type \mathcal{A} to objects of type \mathcal{B} , we want to be sure that whenever $X : \mathcal{A}$ we will know that $U(X) : \mathcal{B}$ and that U[X] is not just some *random element* of \mathbb{P} . More, actually, is required of operators, because types allow *equivalent* representations of objects.

By definition, $U: \mathcal{A} \to \mathcal{B}$ means that

whenever $X \mathcal{A} Y$ holds, then $U[X] \mathcal{B} U[Y]$ holds.

We can read $U : \mathcal{A} \rightarrow \mathcal{B}$ as saying:

U is a *mapping* from \mathcal{A} to \mathcal{B} , or

U maps \mathcal{A} to \mathcal{B}

Already, there are some *very easy* theorems to prove:

Theorem. For any type \mathcal{A} , it is true that $\lambda X \cdot X : \mathcal{A} \to \mathcal{A}$.

Theorem. For types \mathcal{A} and \mathcal{B} , if $B : \mathcal{B}$, then $K[B] = \lambda X \cdot B : \mathcal{A} \to \mathcal{B}$.

Theorem. For types \mathcal{A} , \mathcal{B} , and C, if $U : \mathcal{A} \to \mathcal{B}$ and $V : \mathcal{B} \to C$, then

 $\lambda X.V[U[X]]: \mathcal{A} \to C.$

We need to use the *composition* of mappings so often we will write:

$$(V \circ U) = \lambda X. V[U[X]]$$

Note. The notation $(V \circ U)$ is preferred, because it is more readable than using a *combinator*!

Also clear is that a type with *just one element* picks out just one element of a type under a mapping. A typical oneelement type is the type $\bot = Id(\{\phi\})$.

Theorem. For any $B \in \mathbb{P}$ and any type \mathcal{B} , we have $B : \mathcal{B}$ if, and only if, there is a mapping $U : \bot \to \mathcal{B}$ such that $U[\phi] = B$.

We remark that the empty type $Id(\phi) = \phi$ has an *extreme* property.

Theorem. For any $U \in \mathbb{P}$ and any type \mathcal{B} , we have $U: Id(\phi) \to \mathcal{B}$.

Now, we have been writing $U : \mathcal{A} \to \mathcal{B}$ as if this were a *type statement*. Is it possible that $\mathcal{A} \to \mathcal{B}$ can be considered as being a type in itself *made up from* \mathcal{A} and \mathcal{B} ? The answer is *YES*!

Given types \mathcal{A} and \mathcal{B} , the type $(\mathcal{A} \rightarrow \mathcal{B})$ is the *PER* defined as follows:

 $U(\mathcal{A} \rightarrow \mathcal{B})V$ if, and only if, whenever $X \mathcal{A} Y$ holds, then $U[X] \mathcal{B} V[Y]$ holds.

This means, roughly speaking, that U and V — as operators — do equivalent things in \mathcal{B} to equivalent things in \mathcal{A} .

Note. Under this definition that $U : \mathcal{A} \to \mathcal{B}$ does mean the same as $U(\mathcal{A} \to \mathcal{B}) U$.

We should, however, verify the following statement.

Theorem. Under the definition, $(\mathcal{A} \rightarrow \mathcal{B})$ is a *PER*, provided \mathcal{A} and \mathcal{B} are.

The proof is easy.

Warning. By the way, $(Id(\phi) \rightarrow \mathcal{B}) = \mathbb{P}$. (Why?)

We should also relate *restricted* abstraction to the *unrestricted* version.

Theorem. For types \mathcal{A} and \mathcal{B} , if $\lambda X \cdot U[X] : \mathcal{A} \to \mathcal{B}$, then

 $\lambda X: \mathcal{A}. U[X] (\mathcal{A} \to \mathcal{B}) \lambda X. U[X]$

Proof. Suppose $S \mathcal{A} T$. Then $U[S] \mathcal{B} U[T]$.

We have $S : \mathcal{A}$. (Why?) Therefore, $(\lambda X : \mathcal{A} \cdot U[X])[S] = U[S]$.

Of course, $(\lambda X \cdot U[X])[T] = U[T]$.

Hence, $(\lambda X : \mathcal{A} \cdot U[X])[S] (\mathcal{A} \to \mathcal{B}) (\lambda X \cdot U[X])[T]$. Q.E.D.

We should also *generalize* an earlier theorem.

Theorem. If types \mathcal{A}, \mathcal{B} , and C are such there are mappings where

 $U_0 (\mathcal{A} \to \mathcal{B}) U_1$ and $V_0 (\mathcal{B} \to \mathcal{C}) V_1$, then we have $V_0 \circ U_0 (\mathcal{A} \to \mathcal{C}) V_1 \circ U_1$.

Type constructs

The definition of $(\mathcal{A} \rightarrow \mathcal{B})$ is one way of making new types out of old, and there are a *multitude* of other ways of doing so. In this section we present five important ones.

The first is by *intersection*.

 $U(\mathcal{A} \cap \mathcal{B}) V$ if, and only if, both $U \mathcal{A} V$ and $U \mathcal{B} V$.

Theorem. If \mathcal{A} and \mathcal{B} are *PERs*, then so is $\mathcal{A} \cap \mathcal{B}$.

In fact, the intersection of *any* family of *PERs* is again a *PER*, as is easily proved.

It is not the case that the *union* of *PERs* is necessarily a *PER*. The example of the two *Pers* $\{\{0\}, \{1\}\} \times \{\{0\}, \{1\}\}$ and $\{\{1\}, \{2\}\} \times \{\{1\}, \{2\}\}$ show this. (Why?) What is needed is to *add* something to a union.

 $U(\mathcal{A} \biguplus \mathcal{B}) V$ if, and only if, $\exists Z \in \mathbb{P}, n \in \mathbb{N}$. such that Z[0] = U and Z[n] = V and

 $\forall i < n. \text{ either } Z[i] \mathcal{A} Z[i+1] \text{ or } Z[i] \mathcal{B} Z[i+1].$

Theorem. If \mathcal{A} and \mathcal{B} are *PERs*, then so is $\mathcal{A} \biguplus \mathcal{B}$.

We could say that $\mathcal{A} \biguplus \mathcal{B}$ is the *PER* that is *generated by* the union $\mathcal{A} \bigcup \mathcal{B}$. It is also the *least PER* containing the union. (Why?)

There are situations when the union of **PERs** is again a **PER**, however. We formulate two.

Theorem. If two *PERs* \mathcal{A} and \mathcal{B} are such that $\mathcal{A} \cap \mathcal{B} = \phi$, then $\mathcal{A} \cup \mathcal{B}$ is again a *PER*.

Theorem. If a sequence of *PERs* is such that $\mathcal{A}_0 \subseteq \mathcal{A}_1 \subseteq \ldots \subseteq \mathcal{A}_i \subseteq \ldots$, then the union $\bigcup_{i=0}^{\infty} \mathcal{A}_i$ is again a *PER*.

The next definition expands the idea of a cartesian product from sets to PERs.

 $U(\mathcal{A} \times \mathcal{B})V$ if, and only if, *both* 1 st[U] \mathcal{A} 1 st[V] *and* 2 nd[U] \mathcal{B} 2 nd[V].

We need to remember here that under our interpretation of *ordered pairs of sets* in \mathbb{P} , every set is at the same time a pair: $U = \lfloor 1 \text{ st } [U], 2 \text{ nd} [U] \rfloor$. So we could have written this definition equivalently as follows:

 $[U_0, U_1](\mathcal{A} \times \mathcal{B})[V_0, V_1]$, and only if, both $U_0 \mathcal{A} V_0$ and $U_1 \mathcal{B} V_1$.

Theorem. If \mathcal{A} and \mathcal{B} are *PERs*, then so is $\mathcal{A} \times \mathcal{B}$.

Warning. Do not *confuse* $\mathcal{A} \times \mathcal{B}$ and $\mathcal{A} \cap \mathcal{B}$. (Why?)

The idea of making a *disjoint sum* (sometimes called *coproduct*) is to make *disjoint copies* of \mathcal{A} and of \mathcal{B} and *then* take a union.

 $U(\mathcal{A} + \mathcal{B})V$ if, and only if, either $1 \operatorname{st}[U] = 1 \operatorname{st}[V] = 0$ and $2 \operatorname{nd}[U] \mathcal{A} 2 \operatorname{nd}[V]$ or

 $1 \operatorname{st}[U] = 1 \operatorname{st}[V] = 1$ and $2 \operatorname{nd}[U] \mathcal{B} 2 \operatorname{nd}[V]$

Again, there is another way of writing this definition:

$$[U_0, U_1](\mathcal{A} + \mathcal{B})[V_0, V_1]$$
 if, and only if, either $U_0 = V_0 = 0$ and $U_1 \mathcal{A} V_1$ or

 $U_0 = V_0 = 1$ and $U_1 \mathcal{B} V_1$

Theorem. If \mathcal{A} and \mathcal{B} are *PERs*, then so is $\mathcal{A} + \mathcal{B}$.

We can also relate the sum to the product via a *union*:

Theorem. $\mathcal{A} + \mathcal{B} = (Id(\{0\}\} \times \mathcal{A}) \cup (Id(\{1\}\} \times \mathcal{B}))$

Note also these equations :

Corollary. $Id(\{0\}) \times \mathcal{A} = \mathcal{A} + \phi$ and $Id(\{1\}\} \times \mathcal{B} = \phi + \mathcal{B}$.

The last construct to be defined now is called *lifting*.

$$\mathcal{A}_{\perp} = (\mathcal{A} + \phi) \bigcup \perp$$

The need for this construct will be clear later in discussing partial functions.

There are many, many *relationships* between types that can be explained in terms of mappings. That will be the subject of the *next lecture*.