CS263-Spring 2008 Topic 2: Type Theory Section 6.1: Type Semantics II

Dana S. Scott Hillman University Professor (Emeritus) School of Computer Science Carnegie Mellon University

Visiting Professor EECS Visiting Scientist Logic & Methodology Program University of California, Berkeley

Last edited 23 February 2008

A set-theoretic interpretation of types (Review)

Type constructs

Given types \mathcal{A} and \mathcal{B} , the type $(\mathcal{A} \rightarrow \mathcal{B})$ is the *PER* defined as follows:

 $U(\mathcal{A} \rightarrow \mathcal{B}) V$ if, and only if, whenever $X \mathcal{A} Y$ holds, then $U[X] \mathcal{B} V[Y]$ holds.

The definition of $(\mathcal{A} \rightarrow \mathcal{B})$ is one way of making new types out of old, and there are a *multitude* of other ways of doing so. In this section we present five important ones.

The first is by *intersection*.

 $U(\mathcal{A} \cap \mathcal{B}) V$ if, and only if, both $U \mathcal{A} V$ and $U \mathcal{B} V$.

Theorem. If \mathcal{A} and \mathcal{B} are *PERs*, then so is $\mathcal{A} \cap \mathcal{B}$.

In fact, the intersection of *any* family of *PERs* is again a *PER*, as is easily proved.

It is not the case that the *union* of *PERs* is necessarily a *PER*. The example of the two *Pers* $\{\{0\}, \{1\}\} \times \{\{0\}, \{1\}\}$ and $\{\{1\}, \{2\}\} \times \{\{1\}, \{2\}\}$ show this. (Why?) What is needed is to *add* something to a union.

 $U(\mathcal{A} \biguplus \mathcal{B}) V$ if, and only if, $\exists Z \in \mathbb{P}, n \in \mathbb{N}$. such that Z[0] = U and Z[n] = V and

 $\forall i < n.$ either $Z[i] \mathcal{A} Z[i+1]$ or $Z[i] \mathcal{B} Z[i+1]$.

Theorem. If \mathcal{A} and \mathcal{B} are *PERs*, then so is $\mathcal{A} \not \vdash \mathcal{B}$.

We could say that $\mathcal{A} \not\models \mathcal{B}$ is the *PER* that is *generated by* the union $\mathcal{A} \cup \mathcal{B}$. It is also the *least PER* containing the union. (Why?)

There are situations when the union of **PERs** is again a **PER**, however. We formulate two.

Theorem. If two *PERs* \mathcal{A} and \mathcal{B} are such that $\mathcal{A} \cap \mathcal{B} = \phi$, then $\mathcal{A} \cup \mathcal{B}$ is again a *PER*.

Theorem. If a sequence of *PERs* is such that $\mathcal{A}_0 \subseteq \mathcal{A}_1 \subseteq \ldots \subseteq \mathcal{A}_i \subseteq \ldots$, then the union $\bigcup_{i=0}^{\infty} \mathcal{A}_i$ is again a *PER*.

The next definition expands the idea of a *cartesian product* from sets to *PERs*.

 $U(\mathcal{A} \times \mathcal{B})V$ if, and only if, both $1 \operatorname{st}[U] \mathcal{A} 1 \operatorname{st}[V]$ and $2 \operatorname{nd}[U] \mathcal{B} 2 \operatorname{nd}[V]$.

We need to remember here that under our interpretation of *ordered pairs of sets* in \mathbb{P} , every set is at the same time a pair: $U = \lfloor 1 \text{ st } [U], 2 \text{ nd} [U] \rfloor$. So we could have written this definition equivalently as follows:

 $[U_0, U_1](\mathcal{A} \times \mathcal{B})[V_0, V_1]$, and only if, both $U_0 \mathcal{A} V_0$ and $U_1 \mathcal{B} V_1$.

Theorem. If \mathcal{A} and \mathcal{B} are *PERs*, then so is $\mathcal{A} \times \mathcal{B}$.

Warning. Do not *confuse* $\mathcal{A} \times \mathcal{B}$ and $\mathcal{A} \cap \mathcal{B}$. (Why?)

The idea of making a *disjoint sum* (sometimes called *coproduct*) is to make *disjoint copies* of \mathcal{A} and of \mathcal{B} and *then* take a union.

 $U(\mathcal{A} + \mathcal{B})V$ if, and only if, either $1 \operatorname{st}[U] = 1 \operatorname{st}[V] = 0$ and $2 \operatorname{nd}[U] \mathcal{A} 2 \operatorname{nd}[V]$ or

 $1 \operatorname{st}[U] = 1 \operatorname{st}[V] = 1 \operatorname{and} 2 \operatorname{nd}[U] \mathcal{B} 2 \operatorname{nd}[V]$

Again, there is another way of writing this definition:

 $[U_0, U_1](\mathcal{A} + \mathcal{B})[V_0, V_1]$ if, and only if, either $U_0 = V_0 = 0$ and $U_1 \mathcal{A} V_1$ or

 $U_0 = V_0 = 1$ and $U_1 \mathcal{B} V_1$

Theorem. If \mathcal{A} and \mathcal{B} are *PERs*, then so is $\mathcal{A} + \mathcal{B}$.

We can also relate the sum to the product via a *union*:

Theorem. $\mathcal{A} + \mathcal{B} = (Id(\{0\}\} \times \mathcal{A}) \cup (Id(\{1\}\} \times \mathcal{B}))$

Note also these equations :

Corollary. $Id(\{0\}\} \times \mathcal{A} = \mathcal{A} + \emptyset$ and $Id(\{1\}\} \times \mathcal{B} = \emptyset + \mathcal{B}$.

The last construct to be defined now is called *lifting*.

$$\mathcal{A}_{\perp} = (\mathcal{A} + \phi) \bigcup \perp$$

The need for this construct will be clear later in discussing *partial functions*.

There are many, many *relationships* between types that can be explained in terms of mappings. That will be the subject of the *next lecture*.

Relating types

Isomorphism

Many types represent the *same structure*. For example, types such as $Id(\{n\})$ and $Id(\{m\})$ are both types of *a single*, *isolated element*, and it makes little difference whether we call it n = 0 or m = 1001 or some other integer. The two types give us the same kind of structure and are *isomorphic*. Similarly, $Id(\{0, 1\})$ and $Id(\{13, 666\})$ are isomorphic.

Here is the formal definition:

Two types \mathcal{A} and \mathcal{B} are said to be *isomorphic* provided that there are U and V with $U : \mathcal{A} \to \mathcal{B}$ and $V : \mathcal{B} \to \mathcal{A}$ such that $V \circ U(\mathcal{A} \to \mathcal{A}) \lambda X \cdot X$ and $U \circ V(\mathcal{B} \to \mathcal{B}) \lambda X \cdot X$.

We notate this relationship as $\mathcal{A} \cong \mathcal{B}$.

Note. A stronger condition is being *recursively isomorphic*. This adds the extra condition that both U and V are in RE. We shall find many examples where this stronger relationship holds because so many basic operators are *computable*.

The conditions on U and V for giving an isomorphism could also have been stated as:

 $\forall X : \mathcal{A} \cdot V[U[X]] \mathcal{A} X$ and $\forall Y : \mathcal{B} \cdot U[V[Y]] \mathcal{B} Y$.

(Why?)

Theorem. Isomorphism (and, likewise, recursive isomorphism) is an *equivalence relation* among types.

Proof. (1) Inasmuch as $\lambda X \cdot X (\mathcal{A} \to \mathcal{A}) \lambda X \cdot X$, then $\mathcal{A} \cong \mathcal{A}$ follows.

(2) If we have $\mathcal{A} \cong \mathcal{B}$ using U and V as in the definition, then we have $\mathcal{B} \cong \mathcal{A}$ using V and U.

(3) Suppose $\mathcal{A} \cong \mathcal{B}$ using U and V, and $\mathcal{B} \cong C$ using S and T. Then we can show that $\mathcal{A} \cong C$ by using $S \circ U$ and $V \circ T$. (Why?) Q.E.D.

Note. In formulating these conditions, some authors prefer the more algebraic notation using these abbreviations: $\mathbf{l} = \lambda X \cdot X$ and $\mathbf{l}_{\mathcal{A}} = \lambda X : \mathcal{A} \cdot X$.

Theorem. For $A \in \mathbb{P}$ and $\mathbb{A} \subseteq \mathbb{P}$, we have $\bot \cong Id(\{A\}) \cong \mathbb{A} \times \mathbb{A} \cong (\mathbb{A} \times \mathbb{A}) \to (\mathbb{A} \times \mathbb{A})$.

We also note that isomorphisms *compose* under *some of* our type constructs:

Theorem. For *PERs* $\mathcal{A}_0 \cong \mathcal{A}_1$ and $\mathcal{B}_0 \cong \mathcal{B}_1$, we have

$$\mathcal{A}_0 \to \mathcal{B}_0 \cong \mathcal{A}_1 \to \mathcal{B}_1,$$
$$\mathcal{A}_0 \times \mathcal{B}_0 \cong \mathcal{A}_1 \times \mathcal{B}_1,$$
$$\mathcal{A}_0 + \mathcal{B}_0 \cong \mathcal{A}_1 + \mathcal{B}_1$$
$$\mathcal{A}_0 = \mathcal{A}_1 = \mathcal{A}_1$$

 $\mathcal{A}_0 + \mathcal{B}_0 \cong \mathcal{A}_1 + \mathcal{B}_1$, and

$$\mathcal{A}_{0_{\perp}} \cong \mathcal{A}_{1_{\perp}}.$$

Question. What about \bigcap and \biguplus ?

Order-theoretic properties

Note. On pp. 116-118 of "*An Introduction to Lambda Calculi for Computer Scientists*" by Chris Hankin, a number of properties of *intersection types* are mentioned. We shall now verify the corresponding properties using our definitions.

Clearly \subseteq is a partial ordering, and we have no need of discussing the obvious properties of that relation in connection with \cap . There are also similar properties for \biguplus .

Keep in mind that we also have two *extreme types* ϕ and $\mathbb{P} = \mathbb{P} \times \mathbb{P}$, so that for all types \mathcal{A} we have $\phi \subseteq \mathcal{A} \subseteq \mathbb{P}$. And \mathbb{P} is a very *silly* type making all things equivalent. Hence, we can say both that $\mathbb{P} = \mathbb{P} \to \mathbb{P}$ and $\mathbb{P} \cong Id(\{0\})$. (Why?) Those are the *uninteresting* order-theoretic properties. Here are more interesting ones:

Theorem. For types \mathcal{A} , \mathcal{B} , and C we have

$$(\mathcal{A} \to C) \cap (\mathcal{B} \to C) \subseteq ((\mathcal{A} \cap \mathcal{B}) \to C)$$
, and
 $(\mathcal{A} \to (\mathcal{B} \cap C)) = (\mathcal{A} \to \mathcal{B}) \cap (\mathcal{A} \to C)$.

The proofs are very easy from the definitions.

Warning. The reason that the first relationship is *not* an equality is that we might have $(\mathcal{A} \cap \mathcal{B}) = \emptyset$ thereby making $((\mathcal{A} \cap \mathcal{B}) \rightarrow C)$ too large!

In the cases of the other constructs, we find some *monotonicity*. But one case is *special*.

Theorem. If we have types $\mathcal{A} \subseteq \mathcal{B}$, and $\mathcal{C} \subseteq \mathcal{D}$, then we have

$$(\mathcal{A} + C) \subseteq (\mathcal{B} + \mathcal{D}),$$
$$(\mathcal{A} \times C) \subseteq (\mathcal{B} \times \mathcal{D}),$$
$$\mathcal{A}_{\perp} \subseteq \mathcal{B}_{\perp}, \text{and}$$
$$(\mathcal{B} \to C) \subseteq (\mathcal{A} \to \mathcal{D}).$$

Warning. In the case of the mapping-space construct there is a *reversal* of order. (Why?)

Sums, products and exponentials

In the case of intersection types we had an *identity* between types. More generally, just *isomorphisms* should be expected. (Why?) We start with *products*.

Theorem. For types \mathcal{A} , \mathcal{B} , and \mathcal{C} we have:

Note. In fact, here all the isomorphisms are *recursive isomorphisms*. The proofs are left as an exercise.

Theorem. For types \mathcal{A} , \mathcal{B} , and \mathcal{C} we have:

$$(\mathcal{A} \times \mathcal{B}) \to C \cong \mathcal{A} \to (\mathcal{B} \to C)$$
, and
 $\mathcal{A} \to (\mathcal{B} \times C) \cong (\mathcal{A} \to \mathcal{B}) \times (\mathcal{A} \to C)$.

Remember, $\perp = Id(\{\phi\})$, and keep in mind that one-element types behave as if they were the product of **no** types at a time.

Theorem. For all types \mathcal{A} , we have

$$\bot \to \mathcal{A} \cong \mathcal{A}$$
, and

$$\mathcal{A} \rightarrow \mathbf{\perp} \cong \mathbf{\perp}$$

For other finite types, we have "arithmetic" answers. First some definitions:

$$0 \mathcal{A} = \phi$$
$$(n+1) \mathcal{A} = n \mathcal{A} + \mathcal{A}$$
$$\mathcal{A}^{0} = \bot$$
$$\mathcal{A}^{n+1} = \mathcal{A}^{n} \times \mathcal{A}$$

It is also convenient to have an abbreviated notation for some *finite types*.

$$N_n = Id(\{0, 1, ..., n-1\})$$

Theorem. For all types \mathcal{A} and $n \in \mathbb{N}$, we have

$$\mathcal{N}_n \times \mathcal{A} \cong n \mathcal{A}$$
, and
 $\mathcal{N}_n \to \mathcal{A} \cong \mathcal{A}^n$.

And, of course our definitions agree with *finite integer arithmetic*.

Theorem. For $n, m \in \mathbb{N}$, we have

$$\mathcal{N}_n + \mathcal{N}_m \cong \mathcal{N}_{n+m},$$

 $\mathcal{N}_n \times \mathcal{N}_m \cong \mathcal{N}_{n\,m},$ and
 $\mathcal{N}_n \to \mathcal{N}_m \cong \mathcal{N}_{m^n}.$

Turning now to sums, there are several general laws.

Theorem. For types \mathcal{A} , \mathcal{B} , and C we have

$$\phi + \mathcal{A} \cong \mathcal{A},$$
$$\mathcal{A} + \mathcal{B} \cong \mathcal{B} + \mathcal{A},$$
$$(\mathcal{A} + \mathcal{B}) + C \cong \mathcal{A} + (\mathcal{B} + C), \text{ and}$$
$$\mathcal{A} \times (\mathcal{B} + C) \cong (\mathcal{A} \times \mathcal{B}) + (\mathcal{A} \times C).$$

Theorem. For types \mathcal{A} , \mathcal{B} , and \mathcal{C} we have

$$(\mathcal{A} + \mathcal{B}) \to C \cong (\mathcal{A} \to C) \times (\mathcal{B} \to C).$$

Note. It was shown in the book, "Isomorphisms of types : from λ -calculus to information retrieval and language design" by Roberto Di Cosmo, that no other general laws are to be expected. However, as we shall see, there are special types over \mathbb{P} which do satisfy interesting isomorphism relations.