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A set-theoretic interpretation of types (Review)

‡ Type constructs

Given types  and , the type H Æ L is the PER defined as follows:

U H Æ LV if, and only if, whenever X  Y holds, then U@XDV@YD holds.

The definition of H Æ L is one way of making new types out of old, and there are a multitude of other ways of doing 
so.  In this section we present five important ones.  

The first is by intersection.

U H›LV if, and only if, both U  V and U V.

Theorem.  If  and  are PERs, then so is ›.

In fact, the intersection of any family of PERs is again a PER, as is easily proved.  

It is not the case that the union of PERs is necessarily a PER.  The example of the two Pers 880<, 81<<¥ 880<, 81<< and 
881<, 82<<¥ 881<, 82<< show this.  (Why?)  What is needed is to add something to a union.



It is not the case that the union of PERs is necessarily a PER.  The example of the two Pers 880<, 81<<¥ 880<, 81<< and 
881<, 82<<¥ 881<, 82<< show this.  (Why?)  What is needed is to add something to a union.

U HùL V  if, and only if, $ Z Œ , n Œ . such that Z@0D  U and Z@nD  V and 

" i < n. either  Z@iD Z@i + 1D or Z@iDZ@i + 1D.
Theorem.  If  and  are PERs, then so is ù.

We could say that ù is the PER that is generated by the union ‹.  It is also the least PER containing the union.  
(Why?)

There are situations when the union of PERs is again a PER, however.  We formulate two.

Theorem.  If two PERs  and  are such that ›  ∅, then ‹ is again a PER.

Theorem.  If a sequence of PERs is such that 0 Õ 1 Õ … Õ i Õ … , then the union ‹iä0• i is again a PER.

The next definition expands the idea of a cartesian product from sets to PERs.

U H¥LV if, and only if, both 1 st@UD 1 st@VD and 2 nd@UD 2 nd@VD.
We need to remember here that under our interpretation of ordered pairs of sets in , every set is at the same time a pair: 
U  d1 st @UD, 2 nd@UDt.  So we could have written this definition equivalently as follows:

dU0, U1t H¥L dV0, V1t, and only if, both U0 V0 and U1V1.

Theorem.  If  and  are PERs, then so is ¥.

Warning.  Do not confuse ¥  and ›.  (Why?)

The idea of making a disjoint sum (sometimes called coproduct) is to make disjoint copies of  and of  and then take a 
union.

U H + LV if, and only if, either 1 st@UD  1 st@VD  0 and 2 nd@UD 2 nd@VD or

 1 st@UD  1 st@VD  1 and 2 nd@UD 2 nd@VD
Again, there is another way of writing this definition:

dU0, U1t H + L dV0, V1t if, and only if, either U0  V0  0 and U1V1 or

 U0  V0  1 and U1V1

Theorem.  If  and  are PERs, then so is  + .

We can also relate the sum to the product via a union:

Theorem.   +   HH80<<¥L ‹ HH81<<¥L
Note also these equations :

Corollary.   H80<<¥   + ∅ and H81<<¥  ∅ + .  

The last construct to be defined now is called lifting.

^  H +«L‹^
The need for this construct will be clear later in discussing partial functions.
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There are many, many relationships between types that can be explained in terms of mappings.  That will be the subject of 
the next lecture.

Relating types

‡ Isomorphism

Many types represent the same structure.  For example, types such as H8n<L and H8m<L are both types of a single, 
isolated element, and it makes little difference whether we call it n  0 or m  1001or some other integer.  The two types 
give us the same kind of structure and are isomorphic.  Similarly, H80, 1<L and H813, 666<L are isomorphic.  

Here is the formal definition:

Two types  and  are said to be isomorphic provided that

there are U and V with U :  Æ  and V :  Æ  such that

V ÎUH Æ L l X. X and UÎVH Æ L l X. X.

We notate this relationship as  @ .

Note.  A stronger condition is being recursively isomorphic.  This adds the extra condition that both U and V are  in .  
We shall find many examples where this stronger relationship holds because so many basic operators are computable.

The conditions on U and V for giving an isomorphism could also have been stated as:

                                                       " X :  . V@U@XDD X and " Y :  . U @V @YDDY.

(Why?)

Theorem.  Isomorphism (and, likewise, recursive isomorphism) is an equivalence relation among types.

Proof.  (1) Inasmuch as l X. X H Æ L l X. X, then  @  follows.

(2) If we have  @  using U and V as in the definition, then we have  @  using V and U.

(3) Suppose  @  using U and V,  and  @  using S and T.  Then we can show that  @  by using SÎU and V ÎT.  
(Why?)  Q.E.D.

Note.  In formulating these conditions, some authors prefer the more algebraic notation using these abbreviations: 
  l X.X and   l X : . X.

Theorem.  For A Œ  and  Õ , we have ^ @ H8A<L @ ¥ @ H¥L Æ H¥L .

We also note that isomorphisms compose under some of our type constructs:

Theorem.  For PERs 0 @ 1 and 0 @ 1, we have

0 Æ 0 @ 1 Æ 1,

0 ¥ 0 @ 1 ¥1,

0 + 0 @ 1 + 1, and

       0^ @ 1^.
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Theorem.  For PERs 0 @ 1 and 0 @ 1, we have

0 Æ 0 @ 1 Æ 1,

0 ¥ 0 @ 1 ¥1,

0 + 0 @ 1 + 1, and

       0^ @ 1^.

Question.  What about › and ù?

‡ Order-theoretic properties

Note.  On pp. 116|118 of "An Introduction to Lambda Calculi for Computer Scientists" by Chris Hankin, a number of 
properties of intersection types are mentioned.  We shall now verify the corresponding properties using our definitions.

Clearly Õ is a partial ordering, and we have no need of discussing the obvious properties of that relation in connection 
with › .  There are also similar properties for ù.  
Keep in mind that we also have two extreme types ∅ and   ¥, so that for all types  we have ∅ Õ  Õ .  And  
is a very silly type making all things equivalent.  Hence, we can say both that    Æ  and  @ H80<L.  (Why?)  
Those are the uninteresting order-theoretic properties.  Here are more interesting ones:

Theorem.   For types  , , and  we have 

                                 H Æ L › H Æ L Õ HH›L Æ L, and                          

                                 H Æ H› LL  H Æ L › H Æ L.     
The proofs are very easy from the definitions.

Warning.  The reason that the first relationship is not an equality is that we might have H›L  ∅ thereby making 
HH›L Æ L too large!  

In the cases of the other constructs, we find some monotonicity.  But one case is special.

Theorem.   If we have types  Õ , and  Õ , then we have 

                                           H + L Õ H + L,                                                                      
                                           H¥L Õ H¥L, 
                                                  ^ Õ ^, and

                                          H Æ L Õ H Æ L.                          
Warning.  In the case of the mapping-space construct there is a reversal of order.  (Why?)  

‡ Sums, products and exponentials

In the case of intersection types we had an identity between types.  More generally, just isomorphisms should be expected.  
(Why?)  We start with products.

Theorem.  For types  , , and  we have:

                                             ^ ¥ @ ,

                                              ¥ @ ¥, and

                                     H¥L¥ @ ¥ H¥L.
Note.  In fact, here all the isomorphisms are recursive isomorphisms.  The proofs are left as an exercise.

Theorem.  For types  , , and  we have:

                                     H¥L Æ  @  Æ H Æ L, and

                                      Æ H¥L @ H Æ L¥ H Æ L.
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Theorem.  For types  , , and  we have:

                                     H¥L Æ  @  Æ H Æ L, and

                                      Æ H¥L @ H Æ L¥ H Æ L.
Remember, ^  H8∅<L, and keep in mind that one-element types behave as if they were the product of no types at a 
time.

Theorem.  For all types  , we have

                                             ^ Æ  @ , and

                                              Æ ^ @ ^.

For other finite types, we have "arithmetic" answers.  First some definitions:

0   ∅

Hn + 1L  n + 
0  ^

n+1  n ¥

It is also convenient to have an abbreviated notation for some finite types.

n  Id H80, 1, …n - 1<L
Theorem.  For all types  and n Œ  , we have

                                                                            n ¥ @ n, and                                             
                                             n Æ  @ n.

And, of course our definitions agree with finite integer arithmetic.

Theorem.  For n, m Œ , we have

 n + m @ n+m,

  n ¥m @ nm, and

n Æ m @ mn .

Turning now to sums, there are several general laws.

Theorem.  For types  , , and  we have

                                               ∅ +  @ ,

                                                +  @  + ,

                                     H + L +  @  + H + L, and

                                      ¥ H + L @ H¥L + H¥L.
Theorem.  For types  , , and  we have

                                     H + L Æ  @ H Æ L¥ H Æ L.
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Note.  It was shown in the book, "Isomorphisms of types : from l-calculus to information retrieval and language 
design" by Roberto Di Cosmo, that no other general laws are to be expected.  However, as we shall see, there are special 
types over  which do satisfy interesting isomorphism relations.
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