CS263-Spring 2008

Topic 2: Type Theory

Section 6.1: Type Semantics 11

Last edited 23 February 2008

I A set-theoretic interpretation of types (Review)

m Type constructs

Given types A and B, the type (A — B) is the PER defined as follows:
U (A - B) Vif, and only if, whenever X A Y holds, then U[X] B V[Y] holds.

The definition of (A — B) is one way of making new types out of old, and there are a mulfitude of other ways of doing
so. In this section we present five important ones.

The first is by intersection.
UANB)Vif,and only if, both U AV and U BV.
Theorem. If A and B are PERs, then so is A B.

In fact, the intersection of any family of PERs is again a PER, as is easily proved.

CS5263-6.1edit.nb

It is not the case that the union of PERs is necessarily a PER. The example of the two Pers {{0}, {1}} X {{0}, {1}} and
{{1}, {2}} x {{1}, {2}} show this. (Why?) What is needed is to add something to a union.

U AW B) Vif,and only if, 1 Z € P, n € N. such that Z[0] = U and Z[r] =V and
Vi < n.either Z[i] AZ[i + 1] or Z[i] B Z[i + 1].
Theorem. If A and B are PERs, then so is A 1) B.

We could say that A |t} B is the PER that is generated by the union A |J B. It is also the least PER containing the union.
(Why?)

There are situations when the union of PERs is again a PER, however. We formulate two.
Theorem. If two PERs A and B are such that A (| B = @, then A U B is again a PER.
Theorem. If a sequence of PERs is such that Ay € Ay € ... € A; C ..., then the union |2 A; is again a PER.
The next definition expands the idea of a cartesian product from sets to PERs.
U (AxB)Vif, and only if, both 1 stflU] A 1st[V] and 2 nd[U] B 2 nd[V].

We need to remember here that under our interpretation of ordered pairs of sets in [P, every set is at the same time a pair:
U =|1st[U], 2nd[U]]. So we could have written this definition equivalently as follows:

LUy, U1] (A% B) LVy, V11, and only if, both Uy AV and U; B V.
Theorem. If A and B are PERs, then so is A X B.
Warning. Do not confuse AxB and A () B. (Why?)

The idea of making a disjoint sum (sometimes called coproduct) is to make disjoint copies of ‘A and of B and then take a
union.

U (A + B)V if, and only if, either 1 st[U] = 1st[V] = 0 and 2 nd[U] A 2nd[V] or
1st[U] =1st[V] =1 and 2nd[U] B2 nd[V]
Again, there is another way of writing this definition:
LU, U1] (A + B) | Vy, V1] if, and only if, either Uy =V = 0 and U; A V; or
Uy=Vy=1and U, BV;
Theorem. If A and B are PERs, then so is A + B.
We can also relate the sum to the product via a union:
Theorem. A + B = (Zd({0}} x A) U (Id({1}} x B)
Note also these equations :
Corollary. Zd({0}}x A=A+ P and Id{1}} x B =P + B.
The last construct to be defined now is called lifting.
A, =A+OU L

The need for this construct will be clear later in discussing partial functions.

CS263-6.1edit.nb 3

There are many, many relationships between types that can be explained in terms of mappings. That will be the subject of
the next lecture.

I Relating types

m Isomorphism

Many types represent the same structure. For example, types such as Zd({n}) and Zd({m}) are both types of a single,
isolated element, and it makes little difference whether we call it = 0 or m = 1001or some other integer. The two types
give us the same kind of structure and are isomorphic. Similarly, Zd ({0, 1}) and Zd ({13, 666}) are isomorphic.

Here is the formal definition:
Two types A and B are said to be isomorphic provided that
there are U and Vwith U : A - B and V : B - A such that
VoUA » A)AX. X and UoV(B » B)LX. X.
We notate this relationship as A = B.

Note. A stronger condition is being recursively isomorphic. This adds the extra condition that both U and V are in RE.
We shall find many examples where this stronger relationship holds because so many basic operators are computable.

The conditions on U and V for giving an isomorphism could also have been stated as:
VX : A.VIUIXIIAXandVY : B.U[V[Y]IBY.
(Why?)
Theorem. Isomorphism (and, likewise, recursive isomorphism) is an equivalence relation among types.
Proof. (1) Inasmuch as A X. X (A » A)A X. X, then A = A follows.
(2) If we have A = B using U and V as in the definition, then we have 8 = A using V and U.

(3) Suppose A = Busing U and V, and B = C using S and T. Then we can show that A = C by using SoU and VoT.
(Why?) Q.E.D.

Note. In formulating these conditions, some authors prefer the more algebraic notation using these abbreviations:
I=AXXandly=2X:A.X.

Theorem. For A € P and A C P, we have L = Jd({A) = AXxA = (AxA) > (AXA).
We also note that isomorphisms compose under some of our type constructs:
Theorem. For PERs Ay = A; and By = By, we have

Ay = By = Ay - By,

Ay X By =2 Ay X Bq,

CS5263-6.1edit.nb

Ay + By = Ay + By, and
ﬂolﬁﬂll.

Question. What about () and l4J?

m Order-theoretic properties

Note. On pp. 116-118 of "An Introduction to Lambda Calculi for Computer Scientists" by Chris Hankin, a number of
properties of intersection types are mentioned. We shall now verify the corresponding properties using our definitions.

Clearly C is a partial ordering, and we have no need of discussing the obvious properties of that relation in connection

with (1) . There are also similar properties for 4.

Keep in mind that we also have two extreme types () and IP = [P x IP, so that for all types A we have) € A CP. And P
is a very silly type making all things equivalent. Hence, we can say both that P =[P — [P and IP = 7d({0}). (Why?)
Those are the uninteresting order-theoretic properties. Here are more interesting ones:

Theorem. For types A , B, and C we have
A->0NB->0c(ANB) - C),and
A->BNO)=A->B)NA-O).

The proofs are very easy from the definitions.

Warning. The reason that the first relationship is rot an equality is that we might have (A (N B) = @ thereby making
(AN B) - C) too large!

In the cases of the other constructs, we find some monotonicity. But one case is special.
Theorem. If we have types A C B, and C C D, then we have
A+O) c(B+D),
(AxC) C(BxD),
A, €B,,and
B->0cHA-D).

Warning. In the case of the mapping-space construct there is a reversal of order. (Why?)

m Sums, products and exponentials

In the case of intersection types we had an identity between types. More generally, just isomorphisms should be expected.
(Why?) We start with products.

Theorem. For types A , B, and C we have:
1l xA=zA,
AxB = BxA,and
(AXB)XC = AX(BxCO).

Note. In fact, here all the isomorphisms are recursive isomorphisms. The proofs are left as an exercise.

CS263-6.1edit.nb

Theorem. For types A , B, and C we have:
AXB)>C=A->(B->C),and
A->BxC)=(A->B)XxX(A->O).

Remember, | = 7d({(h}), and keep in mind that one-element types behave as if they were the product of no types at a
time.

Theorem. For all types A , we have
1L >A=zA and
A->L = 1.

For other finite types, we have "arithmetic" answers. First some definitions:

0A=0
m+1)A=nA+A

A= 1

A = A" x A

It is also convenient to have an abbreviated notation for some finite types.
N,=1d({0,1,..n-1})
Theorem. For all types A and n € N, we have

Ny XA =nA, and
Ny > A=z A"

And, of course our definitions agree with finite integer arithmetic.
Theorem. For n, m € N, we have
N+ N 2 Ny,
NuX Ny =2 Ny, and
Nu=> Ny 2Ny
Turning now to sums, there are several general laws.
Theorem. For types A , B, and C we have
P+ A=A,
A+B=B+A,
A+B)+C=A+(B+C),and
AXB+C) 2 (AXB)+ (AxC).
Theorem. For types A , B, and C we have
A+B) > C=2(A->0O)x(B-0).

CS5263-6.1edit.nb

Note. It was shown in the book, "Isomorphisms of types : from A-calculus to information retrieval and language
design" by Roberto Di Cosmo, that no other general laws are to be expected. However, as we shall see, there are special
types over P which do satisfy interesting isomorphism relations.

