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A set-theoretic interpretation of types (Review)

‡ Type constructs

Given types  and , the type H Æ L is the PER defined as follows:

U H Æ LV if, and only if, whenever X  Y holds, then U@XDV@YD holds.

The definition of H Æ L is one way of making new types out of old, and there are a multitude of other ways of doing 
so.  In this section we present five important ones.  

The first is by intersection.

U H›LV if, and only if, both U  V and U V.

Theorem.  If  and  are PERs, then so is ›.

In fact, the intersection of any family of PERs is again a PER, as is easily proved.  

It is not the case that the union of PERs is necessarily a PER.  The example of the two Pers 880<, 81<<¥ 880<, 81<< and 
881<, 82<<¥ 881<, 82<< show this.  (Why?)  What is needed is to add something to a union.



It is not the case that the union of PERs is necessarily a PER.  The example of the two Pers 880<, 81<<¥ 880<, 81<< and 
881<, 82<<¥ 881<, 82<< show this.  (Why?)  What is needed is to add something to a union.

U HùL V  if, and only if, $ Z Œ , n Œ . such that Z@0D  U and Z@nD  V and 

" i < n. either  Z@iD Z@i + 1D or Z@iDZ@i + 1D.
Theorem.  If  and  are PERs, then so is ù.

We could say that ù is the PER that is generated by the union ‹.  It is also the least PER containing the union.  
(Why?)

There are situations when the union of PERs is again a PER, however.  We formulate two.

Theorem.  If two PERs  and  are such that ›  ∅, then ‹ is again a PER.

Theorem.  If a sequence of PERs is such that 0 Õ 1 Õ … Õ i Õ … , then the union ‹iä0• i is again a PER.

The next definition expands the idea of a cartesian product from sets to PERs.

U H¥LV if, and only if, both 1 st@UD 1 st@VD and 2 nd@UD 2 nd@VD.
We need to remember here that under our interpretation of ordered pairs of sets in , every set is at the same time a pair: 
U  d1 st @UD, 2 nd@UDt.  So we could have written this definition equivalently as follows:

dU0, U1t H¥L dV0, V1t, and only if, both U0 V0 and U1V1.

Theorem.  If  and  are PERs, then so is ¥.

Warning.  Do not confuse ¥  and ›.  (Why?)

The idea of making a disjoint sum (sometimes called coproduct) is to make disjoint copies of  and of  and then take a 
union.

U H + LV if, and only if, either 1 st@UD  1 st@VD  0 and 2 nd@UD 2 nd@VD or

 1 st@UD  1 st@VD  1 and 2 nd@UD 2 nd@VD
Again, there is another way of writing this definition:

dU0, U1t H + L dV0, V1t if, and only if, either U0  V0  0 and U1V1 or

 U0  V0  1 and U1V1

Theorem.  If  and  are PERs, then so is  + .

We can also relate the sum to the product via a union:

Theorem.   +   HH80<<¥L ‹ HH81<<¥L
Note also these equations :

Corollary.   H80<<¥   + ∅ and H81<<¥  ∅ + .  

The last construct to be defined now is called lifting.

^  H +«L‹^
The need for this construct will be clear later in discussing partial functions.
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There are many, many relationships between types that can be explained in terms of mappings.  That will be the subject of 
the next lecture.

Relating types

‡ Isomorphism

Many types represent the same structure.  For example, types such as H8n<L and H8m<L are both types of a single, 
isolated element, and it makes little difference whether we call it n  0 or m  1001or some other integer.  The two types 
give us the same kind of structure and are isomorphic.  Similarly, H80, 1<L and H813, 666<L are isomorphic.  

Here is the formal definition:

Two types  and  are said to be isomorphic provided that

there are U and V with U :  Æ  and V :  Æ  such that

V ÎUH Æ L l X. X and UÎVH Æ L l X. X.

We notate this relationship as  @ .

Note.  A stronger condition is being recursively isomorphic.  This adds the extra condition that both U and V are  in .  
We shall find many examples where this stronger relationship holds because so many basic operators are computable.

The conditions on U and V for giving an isomorphism could also have been stated as:

                                                       " X :  . V@U@XDD X and " Y :  . U @V @YDDY.

(Why?)

Theorem.  Isomorphism (and, likewise, recursive isomorphism) is an equivalence relation among types.

Proof.  (1) Inasmuch as l X. X H Æ L l X. X, then  @  follows.

(2) If we have  @  using U and V as in the definition, then we have  @  using V and U.

(3) Suppose  @  using U and V,  and  @  using S and T.  Then we can show that  @  by using SÎU and V ÎT.  
(Why?)  Q.E.D.

Note.  In formulating these conditions, some authors prefer the more algebraic notation using these abbreviations: 
  l X.X and   l X : . X.

Theorem.  For A Œ  and  Õ , we have ^ @ H8A<L @ ¥ @ H¥L Æ H¥L .

We also note that isomorphisms compose under some of our type constructs:

Theorem.  For PERs 0 @ 1 and 0 @ 1, we have

0 Æ 0 @ 1 Æ 1,

0 ¥ 0 @ 1 ¥1,

0 + 0 @ 1 + 1, and

       0^ @ 1^.
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Theorem.  For PERs 0 @ 1 and 0 @ 1, we have

0 Æ 0 @ 1 Æ 1,

0 ¥ 0 @ 1 ¥1,

0 + 0 @ 1 + 1, and

       0^ @ 1^.

Question.  What about › and ù?

‡ Order-theoretic properties

Note.  On pp. 116|118 of "An Introduction to Lambda Calculi for Computer Scientists" by Chris Hankin, a number of 
properties of intersection types are mentioned.  We shall now verify the corresponding properties using our definitions.

Clearly Õ is a partial ordering, and we have no need of discussing the obvious properties of that relation in connection 
with › .  There are also similar properties for ù.  
Keep in mind that we also have two extreme types ∅ and   ¥, so that for all types  we have ∅ Õ  Õ .  And  
is a very silly type making all things equivalent.  Hence, we can say both that    Æ  and  @ H80<L.  (Why?)  
Those are the uninteresting order-theoretic properties.  Here are more interesting ones:

Theorem.   For types  , , and  we have 

                                 H Æ L › H Æ L Õ HH›L Æ L, and                          

                                 H Æ H› LL  H Æ L › H Æ L.     
The proofs are very easy from the definitions.

Warning.  The reason that the first relationship is not an equality is that we might have H›L  ∅ thereby making 
HH›L Æ L too large!  

In the cases of the other constructs, we find some monotonicity.  But one case is special.

Theorem.   If we have types  Õ , and  Õ , then we have 

                                           H + L Õ H + L,                                                                      
                                           H¥L Õ H¥L, 
                                                  ^ Õ ^, and

                                          H Æ L Õ H Æ L.                          
Warning.  In the case of the mapping-space construct there is a reversal of order.  (Why?)  

‡ Sums, products and exponentials

In the case of intersection types we had an identity between types.  More generally, just isomorphisms should be expected.  
(Why?)  We start with products.

Theorem.  For types  , , and  we have:

                                             ^ ¥ @ ,

                                              ¥ @ ¥, and

                                     H¥L¥ @ ¥ H¥L.
Note.  In fact, here all the isomorphisms are recursive isomorphisms.  The proofs are left as an exercise.

Theorem.  For types  , , and  we have:

                                     H¥L Æ  @  Æ H Æ L, and

                                      Æ H¥L @ H Æ L¥ H Æ L.
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Theorem.  For types  , , and  we have:

                                     H¥L Æ  @  Æ H Æ L, and

                                      Æ H¥L @ H Æ L¥ H Æ L.
Remember, ^  H8∅<L, and keep in mind that one-element types behave as if they were the product of no types at a 
time.

Theorem.  For all types  , we have

                                             ^ Æ  @ , and

                                              Æ ^ @ ^.

For other finite types, we have "arithmetic" answers.  First some definitions:

0   ∅

Hn + 1L  n + 
0  ^

n+1  n ¥

It is also convenient to have an abbreviated notation for some finite types.

n  Id H80, 1, …n - 1<L
Theorem.  For all types  and n Œ  , we have

                                                                            n ¥ @ n, and                                             
                                             n Æ  @ n.

And, of course our definitions agree with finite integer arithmetic.

Theorem.  For n, m Œ , we have

 n + m @ n+m,

  n ¥m @ nm, and

n Æ m @ mn .

Turning now to sums, there are several general laws.

Theorem.  For types  , , and  we have

                                               ∅ +  @ ,

                                                +  @  + ,

                                     H + L +  @  + H + L, and

                                      ¥ H + L @ H¥L + H¥L.
Theorem.  For types  , , and  we have

                                     H + L Æ  @ H Æ L¥ H Æ L.
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Note.  It was shown in the book, "Isomorphisms of types : from l-calculus to information retrieval and language 
design" by Roberto Di Cosmo, that no other general laws are to be expected.  However, as we shall see, there are special 
types over  which do satisfy interesting isomorphism relations.
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