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Isomorphisms and higher types

‡ A function-space question

As we recall   ¥ and   HL are non-isomorphic types.  (Why?)  The next question concerns H Æ L.
Theorem.  There is a  Õ  such that    HL @ H Æ L.
Proof.  It is true that every U : H Æ L.  (Why?)  But that does not mean that H Æ L is a trivial PER.  In fact, 
U H Æ LV means that U@XD  V@XD for all X Œ .  (Why?)  But this, in turn, means that l X.U@XD  l X.V@XD.  
(Why?)  And, moreover, U H Æ L l X.U@XD holds.  (Why?)

OK.  Let   8l X.U@XD » U Œ <.  Then the desired isomorphism will follow.  Q.E.D.

Theorem.  The two types  and  are not isomorphic.

Proof.  Suppose they were isomorphic.  We want to derive a contradiction.

Isomorphism means we have operators P :  Æ  and Q :  Æ  such that QÎP   and PÎQ  .  (Why?).  
Because these operators are monotone, it would follow that for all X, Y Œ , we would have 

                                         X Õ Y if, and only if, P@XD Õ P@YD.
By the same token, it would follow that for all U, V Œ , we would have 

                                         U Õ V if, and only if, Q@UD Õ Q@VD.
(Why?)   Note that this implies P@∅D = l X.∅.  (Why?)



Isomorphism means we have operators P :  Æ  and Q :  Æ  such that QÎP   and PÎQ  .  (Why?).  
Because these operators are monotone, it would follow that for all X, Y Œ , we would have 

                                         X Õ Y if, and only if, P@XD Õ P@YD.
By the same token, it would follow that for all U, V Œ , we would have 

                                         U Õ V if, and only if, Q@UD Õ Q@VD.
(Why?)   Note that this implies P@∅D = l X.∅.  (Why?)

Now in  the set 80< has a very special property: for all X Œ , if X Õ 80<, then either X  ∅ or X  80<.  (Why?)  It then 
follows that for all U Œ , if U Õ P@80<D, then either U  P@∅D or U  P@80<D.  (Why?)  This means that P@80<D has only 
two subsets in .  Note also that P@80<D ≠ P@∅D.  (Why?)  Therefore, P@80<D@D ≠ ∅.  (Why?)  Hence, P@80<D@ED ≠ ∅ for 
some finite E Œ .  (Why?)  Let S  P@80<D@ED.
Consider the operator W  l X.8n Œ S » E Õ X<.  Then W Œ , W Õ P@80<D and W ≠ P@∅D.  (Why?)  Now let e Œ  îE.  

Consider the operator V  l X.9n Œ S … E ‹8e< Õ X=.  Then V Œ , V Õ P@80<D and V ≠ P@∅D.  (Why?)  But V ≠ W.  

(Why?)  

Thus, we have a contradiction! (Why?)  Q.E.D.

Question.  What about  and H Æ L and H Æ L?

‡ Higher-type spaces

We are going to consider whether the types

    , H Æ L, HH Æ L Æ L, HHH Æ L Æ L Æ L, HHHH Æ L Æ L Æ L Æ L, …
naturally have some kind of "limit".  To do this, we define operators which can be used to define these types in a conve-
nient way.

D0  l U.U
Dn+1  l U l X.U@Dn@XDD  l U. HUÎDnL

U n V ñ Dn@UD ä Dn@VD
Whatever the operator Dn is, it is clear that n is a (total) equivalence relation.  (Why?)

Note.  We can unwind the definition of D4 in order to understand better what these operators do.  Some changes of 
variables will help us follow the uses of the definitions.

D4@U4D  l U3.U4@D3@U3DD
 l U3.U4@l U2.U3@D2@U2DDD
 l U3.U4@l U2.U3@l U1.U2@D1@U1DDDD
 l U3.U4@l U2.U3@l U1.U2@l U0.U1@D0@U0DDDDD
 l U3.U4@l U2.U3@l U1.U2@l U0.U1@U0DDDD

Now, if we knew in general that the equation U  l X.U@XD held, then the above expression would collapse to U4.  But, 
this is not true in .  All we can conclude is U4 Õ D4@U4D.
Theorem. The D-operators form a tower:  D0 Õ D1 Õ D2 Õ … Õ Dn Õ Dn+1 Õ … .

Proof.  As the first inclusion means that l U.U Õ l U l X.U@XD, we know this is true.  So, we then proceed by induction.  
Assume that Dn Õ Dn+1, and try to prove that Dn+1 Õ Dn+2.  
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Proof.  As the first inclusion means that l U.U Õ l U l X.U@XD, we know this is true.  So, we then proceed by induction.  
Assume that Dn Õ Dn+1, and try to prove that Dn+1 Õ Dn+2.  

By definition Dn+2  l U. HUÎDn+1L.  By the inductive assumption and monotonicity, we see that 
Dn+2 ù l U. HUÎDnL  Dn+1.  Q.E.D.

Theorem.  For all n Œ , we have Dn ÎDn  Dn.

Proof.  Use induction.  D0 ÎD0  D0 is obvious.  So, assume Dn ÎDn  Dn, and try to prove Dn+1 ÎDn+1  Dn+1.

We use the definitions: Dn+1 ÎDn+1  l U. Dn+1@Dn+1@UDD
 l U. Dn+1@UÎDnD
 l U . HUÎDnLÎDn
 l U .UÎHDn ÎDnL
 l U .UÎDn
 Dn+1

Q.E.D.

Theorem.  For all n Œ , we have Dn ÎDn+1  Dn+1  Dn+1 ÎDn.

Proof. Because D0 Õ Dn, we can argue by monotonicity:

Dn+1 ä D0 ÎDn+1 Õ Dn ÎDn+1 Õ Dn+1 ÎDn+1 ä Dn+1.

Hence, the first equation follows.  The second equation is proved similarly.  Q.E.D.

Corollary.  For all n, m Œ  if m ≥ n, we have Dn ÎDm  Dm  Dm ÎDn.  

Proof. This is an easy induction.  Q.E.D.

Corollary.  For all n Œ , we have n Õ n+1.  

Proof. Assume U n V holds.  This means that Dn@UD ä Dn@VD.  But then:

Dn+1@Dn@UDD ä Dn+1@Dn@VDD.
Then, by our theorem, we see that

Dn+1@UD ä Dn+1@VD.
In other words, U n+1 V holds.  Q.E.D.

We now can derive at once some limiting properties using the equations for the Dn-operators and continuity.  The proofs 
can safely be left to the reader.

D• ä ‹nä0• Dn

U • V ñ D•@UD ä D•@VD
Theorem.  D• ÎD•  D•  l U.UÎD•

Theorem.  For all n Œ , we have Dn ÎD•  D• ÎDn  D•.

Corollary.  For all n Œ , we have n Õ •.  

With these -equivalence relations, the larger the relation the fewer the distinctions.  This "decrease" in structure can be 
made clearer by picking out canonical representatives of each equivalence class.
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n  8Dn@UD » U Œ < including n  •.

Theorem.  For all n Œ  ‹8•<, we have  HnL @ n.

Proof. Take any one of these D-operators.  The corresponding -relation is defined as: U V ñ D@UD ä D@VD.  
Because D  DÎD, we see U  D@UD, for all U.  We also see that HL Õ .   The desired isomorophisms are thus 
D : Æ HL and l U.U : HL Æ .  Q.E.D.

Warning.  While n is a total equivalence relation, n is just a PER.  (Why?)  

Theorem.  For all n Œ , we have n+1 Õ n and • ä ›nä0• n.

Proof. The first inclusion follows from the  equation Dn ÎDn+1  Dn+1.  That • Õ n, follows from the equation 
Dn ÎD•  D•.  Suppose U Œ ›nä0• n.  Because D• ä ‹nä0• Dn, we find that D•@UD ä U Œ •.  Q.E.D.

We can now establish a key connection between mapping spaces.

Theorem.  H• Æ L Õ •

Proof. Suppose that U H• Æ LV.  This means that, for all X and Y, if D•@XD ä D•@YD, then U@XD  V@YD.  We need 
to show that D•@UD ä D•@VD.  But, the equation D•@D•@XDD  D•@D•@XDD is obviously true.  Hence, for all X, we 
have U@D•@XDD  V@D•@XDD.  This implies l X.U@D•@XDD  l X.V@D•@XDD.  But we know that 
D•@UD  l X.U@D•@XDD and D•@VD  l X.V@D•@XDD.  Q.E.D.
Note.  It would be nice if we could prove now that • Õ H• Æ L, and, hence, •  H• Æ L.  But this is not true.  
We can, however, estabilsh an isomorphism.  The problem here is that as a PER • is a total equivalence relation, but 
H• Æ L is not.  What we can prove first is this:

Theorem.  U H• Æ LU if, and only if, l X.U@XD  D•@UD .

Proof.   We have the following equivalences:

U H• Æ LU

ñ " X, Y @ D•@XD  D•@YD î U@XD  U@YD D
ñ " X .U@XD  U@D•@XDD         (Why?)

ñ l X.U@XD  l X.U@D•@XDD  D•@UD
Q.E.D.

Note.  The right-hand side of the theorem is not true when U  l X. X, as we showed in the last section.

Theorem.  • @ H• Æ L
Proof.  Remember   l X. X.  Owing to the inclusion we did prove, it is clear that  : H• Æ L Æ •.  (Why?)

For a mapping in the other direction, we will show D• :• Æ H• Æ L.
We note next these equations:

D•@D•@UDD
 D•@UD
 l X.U@D•@XDD
 l X. D•@UD@XD .

And, by our previous theorem, D¶@UD H• Æ L D•@UD then holds for all U.

So, suppose U • V is true.  This means that D¶@UD D¶@VD.  By what we just proved, D¶@UD H• Æ L D•@VD must 
hold, and so D• has the right mapping property.
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So, suppose U • V is true.  This means that D¶@UD D¶@VD.  By what we just proved, D¶@UD H• Æ L D•@VD must 
hold, and so D• has the right mapping property.

To show we have an isomorphism, we need to establish two facts:

" U :•. D•@UD • U  and  " U : H• Æ L. D•@UD H• Æ L U.

Inasmuch as D•@D•@UDD  D•@UD, the first fact is clear.

To prove the second, assume that U H• Æ LU.  Next, assume D•@XD ä D•@YD.  We have these equalities:

D•@UD@XD
 U@D•@XDD
 U@D•@YDD
 D•@UD@YD
 U@YD .

Thus, D•@UD H• Æ L U holds.  Q.E.D.

Theorem.  H• ¥•L @ • 

Proof. We recall that ¥   and so ¥  .  We then argue:

       H• ¥•L @ H• Æ L¥ H• Æ L
@ H• Æ H¥LL
 H• Æ L
@ • . Q.E.D.

Theorem.  H• Æ •L @ • 

Proof. We can now argue:

     H• Æ •L @ H• Æ H• Æ LL
@ HH• ¥•L Æ L
@ H• Æ L
@ • . Q.E.D.

Note.  The existence of isomorphisms H• Æ •L @ • @ H• ¥•L can be used to show that • is a model of the 
lh-calculus.  This will be spelled out in a later lecture.
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