CS263-Spring 2008 Topic 2: Type Theory Section 6.2: Type Semantics III

Dana S. Scott Hillman University Professor (Emeritus) School of Computer Science Carnegie Mellon University

Visiting Professor EECS Visiting Scientist Logic & Methodology Program University of California, Berkeley

Last edited 5 March 2008

Isomorphisms and higher types

■ A function-space question

As we recall $\mathbb{P} = \mathbb{P} \times \mathbb{P}$ and $\mathcal{P} = Id(\mathbb{P})$ are *non-isomorphic types*. (Why?) The next question concerns ($\mathcal{P} \to \mathcal{P}$).

Theorem. There is a $\mathbb{Q} \subseteq \mathbb{P}$ such that $Q = Id(\mathbb{Q}) \cong (\mathcal{P} \to \mathcal{P})$.

Proof. It is true that every $U : (\mathcal{P} \to \mathcal{P})$. (Why?) But that *does not* mean that $(\mathcal{P} \to \mathcal{P})$ is a trivial *PER*. In fact, $U(\mathcal{P} \to \mathcal{P}) V$ means that U[X] = V[X] for all $X \in \mathbb{P}$. (Why?) But this, in turn, means that $\lambda X \cdot U[X] = \lambda X \cdot V[X]$. (Why?) And, moreover, $U(\mathcal{P} \to \mathcal{P}) \lambda X \cdot U[X]$ holds. (Why?)

OK. Let $\mathbb{Q} = \{\lambda X. U[X] \mid U \in \mathbb{P}\}$. Then the *desired isomorphism* will follow. Q.E.D.

Theorem. The two types \mathcal{P} and Q are *not* isomorphic.

Proof. Suppose they were isomorphic. We want to derive a contradiction.

Isomorphism means we have operators $P : \mathcal{P} \to Q$ and $Q : Q \to \mathcal{P}$ such that $Q \circ P = \mathbb{1}_{\mathcal{P}}$ and $P \circ Q = \mathbb{1}_{Q}$. (Why?).

Because these operators are *monotone*, it would follow that for all $X, Y \in \mathbb{P}$, we would have

$$X \subseteq Y$$
 if, and only if, $P[X] \subseteq P[Y]$.

By the same token, it would follow that for all $U, V \in \mathbb{Q}$, we would have

$$U \subseteq V$$
 if, and only if, $Q[U] \subseteq Q[V]$.

(Why?) Note that this implies $P[\phi] = \lambda X \cdot \phi$. (Why?)

Now in \mathbb{P} the set {0} has a *very special* property: for all $X \in \mathbb{P}$, if $X \subseteq \{0\}$, then either $X = \emptyset$ or $X = \{0\}$. (Why?) It then follows that for all $U \in \mathbb{Q}$, if $U \subseteq P[\{0\}]$, then either $U = P[\emptyset]$ or $U = P[\{0\}]$. (Why?) This means that $P[\{0\}]$ has only two subsets in \mathbb{Q} . Note also that $P[\{0\}] \neq P[\emptyset]$. (Why?) Therefore, $P[\{0\}][\mathbb{N}] \neq \emptyset$. (Why?) Hence, $P[\{0\}][E] \neq \emptyset$ for some *finite* $E \in \mathbb{P}$. (Why?) Let $S = P[\{0\}][E]$.

Consider the operator $W = \lambda X \cdot \{n \in S \mid E \subseteq X\}$. Then $W \in \mathbb{Q}, W \subseteq P[\{0\}]$ and $W \neq P[\phi]$. (Why?) Now let $e \in \mathbb{N} \setminus E$.

Consider the operator $V = \lambda X \{ e \in S \mid E \bigcup \{e\} \subseteq X \}$. Then $V \in \mathbb{Q}, V \subseteq P[\{0\}]$ and $V \neq P[\phi]$. (Why?) But $V \neq W$. (Why?)

Thus, we have a *contradiction!* (Why?) Q.E.D.

Question. What about Q and $(\mathcal{P} \rightarrow Q)$ and $(Q \rightarrow \mathcal{P})$?

Higher-type spaces

We are going to consider whether the types

$$\mathcal{P}, (\mathcal{P} \to \mathcal{P}), ((\mathcal{P} \to \mathcal{P}) \to \mathcal{P}), (((\mathcal{P} \to \mathcal{P}) \to \mathcal{P}) \to \mathcal{P}), ((((\mathcal{P} \to \mathcal{P}) \to \mathcal{P}) \to \mathcal{P}) \to \mathcal{P}), \dots$$

naturally have some kind of "*limit*". To do this, we define *operators* which can be used to define these types in a convenient way.

$$D_0 = \lambda U.U$$
$$D_{n+1} = \lambda U \lambda X. U[D_n[X]] = \lambda U. (U \circ D_n)$$

$$U \mathcal{D}_n V \Longleftrightarrow D_n[U] = D_n[V]$$

Whatever the operator D_n is, it is clear that \mathcal{D}_n is a (total) equivalence relation. (Why?)

Note. We can *unwind* the definition of D_4 in order to understand better what these operators do. Some *changes of variables* will help us follow the uses of the definitions.

 $D_{4}[U_{4}] = \lambda U_{3}. U_{4}[D_{3}[U_{3}]]$ $= \lambda U_{3}. U_{4}[\lambda U_{2}. U_{3}[D_{2}[U_{2}]]]$ $= \lambda U_{3}. U_{4}[\lambda U_{2}. U_{3}[\lambda U_{1}. U_{2}[D_{1}[U_{1}]]]]$ $= \lambda U_{3}. U_{4}[\lambda U_{2}. U_{3}[\lambda U_{1}. U_{2}[\lambda U_{0}. U_{1}[D_{0}[U_{0}]]]]]$ $= \lambda U_{3}. U_{4}[\lambda U_{2}. U_{3}[\lambda U_{1}. U_{2}[\lambda U_{0}. U_{1}[U_{0}]]]]$

Now, if we knew in general that the equation $U = \lambda X \cdot U[X]$ held, then the above expression would *collapse* to U_4 . But, this is *not true* in **P**. All we can conclude is $U_4 \subseteq D_4[U_4]$.

Theorem. The *D*-operators form a tower: $D_0 \subseteq D_1 \subseteq D_2 \subseteq ... \subseteq D_n \subseteq D_{n+1} \subseteq ...$.

Proof. As the first inclusion means that $\lambda U \cdot U \subseteq \lambda U \lambda X \cdot U[X]$, we know this is true. So, we then proceed by *induction*. Assume that $D_n \subseteq D_{n+1}$, and try to prove that $D_{n+1} \subseteq D_{n+2}$.

By definition $D_{n+2} = \lambda U \cdot (U \circ D_{n+1})$. By the inductive assumption and monotonicity, we see that $D_{n+2} \supseteq \lambda U \cdot (U \circ D_n) = D_{n+1}$. Q.E.D.

Theorem. For all $n \in \mathbb{N}$, we have $D_n \circ D_n = D_n$.

Proof. Use induction. $D_0 \circ D_0 = D_0$ is obvious. So, assume $D_n \circ D_n = D_n$, and try to prove $D_{n+1} \circ D_{n+1} = D_{n+1}$.

We use the definitions: $D_{n+1} \circ D_{n+1} = \lambda U \cdot D_{n+1}[D_{n+1}[U]]$

$$= \lambda U. D_{n+1}[U \circ D_n]$$

= $\lambda U. (U \circ D_n) \circ D_n$
= $\lambda U. U \circ (D_n \circ D_n)$
= $\lambda U. U \circ D_n$
= D_{n+1}

Q.E.D.

Theorem. For all $n \in \mathbb{N}$, we have $D_n \circ D_{n+1} = D_{n+1} = D_{n+1} \circ D_n$.

Proof. Because $D_0 \subseteq D_n$, we can argue by monotonicity:

$$D_{n+1} \coloneqq D_0 \circ D_{n+1} \subseteq D_n \circ D_{n+1} \subseteq D_{n+1} \circ D_{n+1} \equiv D_{n+1}$$

Hence, the first equation follows. The second equation is proved similarly. Q.E.D.

Corollary. For all $n, m \in \mathbb{N}$ if $m \ge n$, we have $D_n \circ D_m = D_m \circ D_n$.

Proof. This is an easy induction. Q.E.D.

Corollary. For all $n \in \mathbb{N}$, we have $\mathcal{D}_n \subseteq \mathcal{D}_{n+1}$.

Proof. Assume $U \mathcal{D}_n V$ holds. This means that $D_n[U] = D_n[V]$. But then:

$$D_{n+1}[D_n[U]] = D_{n+1}[D_n[V]]$$

Then, by our theorem, we see that

$$D_{n+1}[U] = D_{n+1}[V].$$

In other words, $U \mathcal{D}_{n+1} V$ holds. Q.E.D.

We now can derive at once some *limiting properties* using the equations for the D_n -operators and continuity. The proofs can safely be left to the reader.

$$D_{\infty} := \bigcup_{n=0}^{\infty} D_n$$
$$U \mathcal{D}_{\infty} V \Longleftrightarrow D_{\infty}[U] := D_{\infty}[V]$$

Theorem. $D_{\infty} \circ D_{\infty} = D_{\infty} = \lambda U.U \circ D_{\infty}$

Theorem. For all $n \in \mathbb{N}$, we have $D_n \circ D_\infty = D_\infty \circ D_n = D_\infty$.

Corollary. For all $n \in \mathbb{N}$, we have $\mathcal{D}_n \subseteq \mathcal{D}_{\infty}$.

With these \mathcal{D} -equivalence relations, the *larger* the relation the *fewer* the distinctions. This "decrease" in structure can be made clearer by picking out *canonical* representatives of each equivalence class.

 $\mathbb{D}_n = \{D_n[U] \mid U \in \mathbb{P}\}$ including $n = \infty$.

Theorem. For all $n \in \mathbb{N} \bigcup \{\infty\}$, we have $Id(\mathbb{D}_n) \cong \mathcal{D}_n$.

Proof. Take any one of these *D*-operators. The corresponding \mathcal{D} -relation is defined as: $U \mathcal{D} V \iff D[U] = D[V]$. Because $D = D \circ D$, we see $U \mathcal{D} D[U]$, for all *U*. We also see that $Id(\mathbb{D}) \subseteq \mathcal{D}$. The desired isomorphisms are thus $D: \mathcal{D} \to Id(\mathbb{D})$ and $\lambda U.U: Id(\mathbb{D}) \to \mathcal{D}$. Q.E.D.

Warning. While \mathcal{D}_n is a *total equivalence relation*, \mathbb{D}_n is just a *PER*. (Why?)

Theorem. For all $n \in \mathbb{N}$, we have $\mathbb{D}_{n+1} \subseteq \mathbb{D}_n$ and $\mathbb{D}_{\infty} = \bigcap_{n=0}^{\infty} \mathbb{D}_n$.

Proof. The first inclusion follows from the equation $D_n \circ D_{n+1} = D_{n+1}$. That $\mathbb{D}_{\infty} \subseteq \mathbb{D}_n$, follows from the equation $D_n \circ D_{\infty} = D_{\infty}$. Suppose $U \in \bigcap_{n=0}^{\infty} \mathbb{D}_n$. Because $D_{\infty} = \bigcup_{n=0}^{\infty} D_n$, we find that $D_{\infty}[U] = U \in \mathbb{D}_{\infty}$. Q.E.D.

We can now establish a key connection between *mapping spaces*.

Theorem. $(\mathcal{D}_{\infty} \rightarrow \mathcal{P}) \subseteq \mathcal{D}_{\infty}$

Proof. Suppose that $U(\mathcal{D}_{\infty} \to \mathcal{P})V$. This means that, for all X and Y, if $D_{\infty}[X] = D_{\infty}[Y]$, then U[X] = V[Y]. We need to show that $D_{\infty}[U] = D_{\infty}[V]$. But, the equation $D_{\infty}[D_{\infty}[X]] = D_{\infty}[D_{\infty}[X]]$ is obviously true. Hence, for all X, we have $U[D_{\infty}[X]] = V[D_{\infty}[X]]$. This implies $\lambda X \cdot U[D_{\infty}[X]] = \lambda X \cdot V[D_{\infty}[X]]$. But we know that $D_{\infty}[U] = \lambda X \cdot U[D_{\infty}[X]]$ and $D_{\infty}[V] = \lambda X \cdot V[D_{\infty}[X]]$. Q.E.D.

Note. It would be nice if we could prove now that $\mathcal{D}_{\infty} \subseteq (\mathcal{D}_{\infty} \to \mathcal{P})$, and, hence, $\mathcal{D}_{\infty} = (\mathcal{D}_{\infty} \to \mathcal{P})$. But this is *not true*. We can, however, establish an *isomorphism*. The problem here is that as a *PER* \mathcal{D}_{∞} is a *total* equivalence relation, but $(\mathcal{D}_{\infty} \to \mathcal{P})$ is *not*. What we can prove first is this:

Theorem. $U(\mathcal{D}_{\infty} \to \mathcal{P}) U$ if, and only if, $\lambda X \cdot U[X] = D_{\infty}[U]$.

Proof. We have the following equivalences:

$$U(\mathcal{D}_{\infty} \to \mathcal{P}) U$$

$$\Leftrightarrow \forall X, Y \left[D_{\infty}[X] = D_{\infty}[Y] \Rightarrow U[X] = U[Y] \right]$$

$$\Leftrightarrow \forall X. U[X] = U[D_{\infty}[X]] \quad (Why?)$$

$$\Leftrightarrow \lambda X. U[X] = \lambda X. U[D_{\infty}[X]] = D_{\infty}[U]$$

Q.E.D.

Note. The right-hand side of the theorem is not true when $U = \lambda X \cdot X$, as we showed in the last section.

Theorem. $\mathcal{D}_{\infty} \cong (\mathcal{D}_{\infty} \to \mathcal{P})$

Proof. Remember $1 = \lambda X \cdot X$. Owing to the *inclusion* we did prove, it is clear that $1 : (\mathcal{D}_{\infty} \to \mathcal{P}) \to \mathcal{D}_{\infty}$. (Why?) For a mapping in the other direction, we will show $D_{\infty} : \mathcal{D}_{\infty} \to (\mathcal{D}_{\infty} \to \mathcal{P})$.

We note next these equations:

$$D_{\infty}[D_{\infty}[U]]$$

$$= D_{\infty}[U]$$

$$= \lambda X \cdot U[D_{\infty}[X]]$$

$$= \lambda X \cdot D_{\infty}[U][X] \cdot$$

And, by our previous theorem, $D_{\infty}[U]$ ($\mathcal{D}_{\infty} \to \mathcal{P}$) $D_{\infty}[U]$ then holds for all U.

So, suppose $U \mathcal{D}_{\infty} V$ is true. This means that $D_{\infty}[U] = D_{\infty}[V]$. By what we just proved, $D_{\infty}[U] (\mathcal{D}_{\infty} \to \mathcal{P}) D_{\infty}[V]$ must hold, and so D_{∞} has the right mapping property.

To show we have an isomorphism, we need to establish two facts:

$$\forall U: \mathcal{D}_{\infty}. D_{\infty}[U] \mathcal{D}_{\infty} U \text{ and } \forall U: (\mathcal{D}_{\infty} \to \mathcal{P}). D_{\infty}[U] (\mathcal{D}_{\infty} \to \mathcal{P}) U$$

Inasmuch as $D_{\infty}[D_{\infty}[U]] = D_{\infty}[U]$, the first fact is clear.

To prove the second, assume that $U(\mathcal{D}_{\infty} \to \mathcal{P}) U$. Next, assume $D_{\infty}[X] = D_{\infty}[Y]$. We have these equalities:

 $D_{\infty}[U][X]$ $= U[D_{\infty}[X]]$ $= U[D_{\infty}[Y]]$ $= D_{\infty}[U][Y]$ = U[Y].

Thus, $D_{\infty}[U] (\mathcal{D}_{\infty} \rightarrow \mathcal{P}) U$ holds. Q.E.D.

Theorem. $(\mathcal{D}_{\infty} \times \mathcal{D}_{\infty}) \cong \mathcal{D}_{\infty}$

Proof. We recall that $\mathbb{P} \times \mathbb{P} = \mathbb{P}$ and so $\mathcal{P} \times \mathcal{P} = \mathcal{P}$. We then argue:

$$(\mathcal{D}_{\infty} \times \mathcal{D}_{\infty}) \cong (\mathcal{D}_{\infty} \to \mathcal{P}) \times (\mathcal{D}_{\infty} \to \mathcal{P})$$
$$\cong (\mathcal{D}_{\infty} \to (\mathcal{P} \times \mathcal{P}))$$
$$= (\mathcal{D}_{\infty} \to \mathcal{P})$$
$$\cong \mathcal{D}_{\infty} \cdot \qquad \mathbf{Q.E.D.}$$

Theorem. $(\mathcal{D}_{\infty} \rightarrow \mathcal{D}_{\infty}) \cong \mathcal{D}_{\infty}$

Proof. We can now argue:

$$(\mathcal{D}_{\infty} \to \mathcal{D}_{\infty}) \cong (\mathcal{D}_{\infty} \to (\mathcal{D}_{\infty} \to \mathcal{P}))$$
$$\cong ((\mathcal{D}_{\infty} \times \mathcal{D}_{\infty}) \to \mathcal{P})$$
$$\cong (\mathcal{D}_{\infty} \to \mathcal{P})$$
$$\cong \mathcal{D}_{\infty} . \qquad \mathbf{QED}.$$

Note. The existence of isomorphisms $(\mathcal{D}_{\infty} \to \mathcal{D}_{\infty}) \cong \mathcal{D}_{\infty} \cong (\mathcal{D}_{\infty} \times \mathcal{D}_{\infty})$ can be used to show that \mathcal{D}_{∞} is a model of the $\lambda\eta$ -calculus. This will be spelled out in a later lecture.