CS263-Spring 2008
 Topic 2: Type Theory
 Section 6.2: Type Semantics III

Dana S. Scott
 Hillman University Professor (Emeritus)
 School of Computer Science
 Carnegle Mellon University

= $=$
Visiting Professor EECCS
Visiting Scientist
Logic \& Methodology Program
University of California, Berkeley

Last edited 5 March 2008

Isomorphisms and higher types

- A function-space question

As we recall $\mathbb{P}=\mathbb{P} \times \mathbb{P}$ and $\mathcal{P}=\boldsymbol{I} d(\mathbb{P})$ are non-isomorphic types. (Why?) The next question concerns $(\mathcal{P} \rightarrow \mathcal{P})$.
Theorem. There is a $\mathbb{Q} \subseteq \mathbb{P}$ such that $\mathbb{Q}=I d(\mathbb{Q}) \cong(\mathcal{P} \rightarrow \mathcal{P})$.
Proof. It is true that every $\boldsymbol{U}:(\mathcal{P} \rightarrow \mathcal{P})$. (Why?) But that does not mean that $(\mathcal{P} \rightarrow \mathcal{P})$ is a trivial PER. In fact, $\boldsymbol{U}(\mathcal{P} \rightarrow \mathcal{P}) \boldsymbol{V}$ means that $\boldsymbol{U}[\boldsymbol{X}]=\boldsymbol{V}[\boldsymbol{X}]$ for all $\boldsymbol{X} \in \mathbb{P}$. (Why?) But this, in turn, means that $\boldsymbol{\lambda} \boldsymbol{X} . \boldsymbol{U}[\boldsymbol{X}]=\boldsymbol{\lambda} \boldsymbol{X} . \boldsymbol{V}[\boldsymbol{X}]$.
(Why?) And, moreover, $\boldsymbol{U}(\mathcal{P} \rightarrow \mathcal{P}) \boldsymbol{\lambda} \boldsymbol{X} \cdot \boldsymbol{U}[\boldsymbol{X}]$ holds. (Why?)
OK. Let $\mathbb{Q}=\{\boldsymbol{\lambda} \boldsymbol{X} \cdot \boldsymbol{U}[X] \mid \boldsymbol{U} \in \mathbb{P}\}$. Then the desired isomorphism will follow. Q.E.D.
Theorem. The two types \mathcal{P} and \boldsymbol{Q} are not isomorphic.
Proof. Suppose they were isomorphic. We want to derive a contradiction.

Isomorphism means we have operators $\boldsymbol{P}: \mathcal{P} \rightarrow \boldsymbol{Q}$ and $\boldsymbol{Q}: \boldsymbol{Q} \rightarrow \boldsymbol{\mathcal { P }}$ such that $\boldsymbol{Q} \circ \boldsymbol{P}=\mathbb{1}_{\mathcal{P}}$ and $\boldsymbol{P} \circ \boldsymbol{Q}=\mathbb{1}_{Q}$. (Why?). Because these operators are monotone, it would follow that for all $\boldsymbol{X}, \boldsymbol{Y} \in \mathbb{P}$, we would have

$$
X \subseteq Y \text { if, and only if, } P[X] \subseteq P[Y]
$$

By the same token, it would follow that for all $\boldsymbol{U}, \boldsymbol{V} \in \mathbb{Q}$, we would have

$$
U \subseteq V \text { if, and only if, } Q[U] \subseteq Q[V]
$$

(Why?) Note that this implies $\boldsymbol{P}[\boldsymbol{\phi}]=\lambda \boldsymbol{X} . \boldsymbol{\Phi}$. (Why?)
Now in \mathbb{P} the set $\{\mathbf{0}\}$ has a very special property: for all $\boldsymbol{X} \in \mathbb{P}$, if $\boldsymbol{X} \subseteq\{\mathbf{0}\}$, then either $\boldsymbol{X}=\boldsymbol{\varnothing}$ or $\boldsymbol{X}=\{\mathbf{0}\}$. (Why?) It then follows that for all $\boldsymbol{U} \in \mathbb{Q}$, if $\boldsymbol{U} \subseteq P[\{0\}]$, then either $\boldsymbol{U}=\boldsymbol{P}[\boldsymbol{\phi}]$ or $\boldsymbol{U}=\boldsymbol{P}[\{\mathbf{0}\}]$. (Why?) This means that $\boldsymbol{P}[\{\mathbf{0}\}]$ has only two subsets in \mathbb{Q}. Note also that $\boldsymbol{P}[\{\boldsymbol{0}\}] \neq \boldsymbol{P}[\boldsymbol{\phi}]$. (Why?) Therefore, $\boldsymbol{P}[\{\boldsymbol{0}\}][\mathbb{N}] \neq \boldsymbol{\phi}$. (Why?) Hence, $\boldsymbol{P}[\{\boldsymbol{0}\}][\boldsymbol{E}] \neq \boldsymbol{\phi}$ for some finite $\boldsymbol{E} \in \mathbb{P}$. (Why?) Let $S=P[\{0\}][E]$.

Consider the operator $\boldsymbol{W}=\lambda X .\{n \in S \mid E \subseteq X\}$. Then $\boldsymbol{W} \in \mathbb{Q}, \boldsymbol{W} \subseteq P[\{0\}]$ and $\boldsymbol{W} \neq P[\phi]$. (Why?) Now let $\boldsymbol{e} \in \mathbb{N} \backslash \boldsymbol{E}$.
Consider the operator $\boldsymbol{V}=\lambda \boldsymbol{X} .\{n \in S \mid E \bigcup\{e\} \subseteq X\}$. Then $\boldsymbol{V} \in \mathbb{Q}, \boldsymbol{V} \subseteq P[\{0\}]$ and $\boldsymbol{V} \neq P[\phi]$. (Why?) But $\boldsymbol{V} \neq \boldsymbol{W}$. (Why?)

Thus, we have a contradiction! (Why?) Q.E.D.
Question. What about Q and $(\mathcal{P} \rightarrow \boldsymbol{Q})$ and $(\boldsymbol{Q} \rightarrow \mathcal{P})$?

■ Higher-type spaces

We are going to consider whether the types

$$
\mathcal{P},(\mathcal{P} \rightarrow \mathcal{P}),((\mathcal{P} \rightarrow \mathcal{P}) \rightarrow \mathcal{P}),(((\mathcal{P} \rightarrow \mathcal{P}) \rightarrow \mathcal{P}) \rightarrow \mathcal{P}),((((\mathcal{P} \rightarrow \mathcal{P}) \rightarrow \mathcal{P}) \rightarrow \mathcal{P}) \rightarrow \mathcal{P}), \ldots
$$

naturally have some kind of "limit". To do this, we define operators which can be used to define these types in a convenient way.

$$
\begin{gathered}
D_{0}=\lambda U . U \\
D_{n+1}=\lambda U \lambda X . U\left[D_{n}[X]\right]=\lambda U .\left(U \circ D_{n}\right) \\
U \mathcal{D}_{n} V \Longleftrightarrow D_{n}[U]==D_{n}[V]
\end{gathered}
$$

Whatever the operator $\boldsymbol{D}_{\boldsymbol{n}}$ is, it is clear that $\mathcal{D}_{\boldsymbol{n}}$ is a (total) equivalence relation. (Why?)
Note. We can unwind the definition of $\boldsymbol{D}_{\mathbf{4}}$ in order to understand better what these operators do. Some changes of variables will help us follow the uses of the definitions.

$$
\begin{aligned}
D_{4}\left[U_{4}\right] & =\lambda U_{3} \cdot U_{4}\left[D_{3}\left[U_{3}\right]\right] \\
& =\lambda U_{3} \cdot U_{4}\left[\lambda U_{2} \cdot U_{3}\left[D_{2}\left[U_{2}\right]\right]\right] \\
& =\lambda U_{3} \cdot U_{4}\left[\lambda U_{2} \cdot U_{3}\left[\lambda U_{1} \cdot U_{2}\left[D_{1}\left[U_{1}\right]\right]\right]\right] \\
& =\lambda U_{3} \cdot U_{4}\left[\lambda U_{2} \cdot U_{3}\left[\lambda U_{1} \cdot U_{2}\left[\lambda U_{0} \cdot U_{1}\left[D_{0}\left[U_{0}\right]\right]\right]\right]\right] \\
& =\lambda U_{3} \cdot U_{4}\left[\lambda U_{2} \cdot U_{3}\left[\lambda U_{1} \cdot U_{2}\left[\lambda U_{0} \cdot U_{1}\left[U_{0}\right]\right]\right]\right]
\end{aligned}
$$

Now, if we knew in general that the equation $\boldsymbol{U}=\boldsymbol{\lambda} \boldsymbol{X} . \boldsymbol{U}[\boldsymbol{X}]$ held, then the above expression would collapse to \boldsymbol{U}_{4}. But, this is not true in \mathbb{P}. All we can conclude is $\boldsymbol{U}_{\mathbf{4}} \subseteq \boldsymbol{D}_{\mathbf{4}}\left[\boldsymbol{U}_{\mathbf{4}}\right]$.

Theorem. The D-operators form a tower: $D_{0} \subseteq D_{1} \subseteq D_{2} \subseteq \ldots \subseteq D_{n} \subseteq D_{n+1} \subseteq \ldots$.

Proof. As the first inclusion means that $\boldsymbol{\lambda} \boldsymbol{U} . \boldsymbol{U} \subseteq \boldsymbol{\lambda} \boldsymbol{U} \boldsymbol{\lambda} \boldsymbol{X} . \boldsymbol{U}[\boldsymbol{X}]$, we know this is true. So, we then proceed by induction. Assume that $\boldsymbol{D}_{\boldsymbol{n}} \subseteq \boldsymbol{D}_{\boldsymbol{n + 1}}$, and try to prove that $\boldsymbol{D}_{\boldsymbol{n + 1}} \subseteq \boldsymbol{D}_{\boldsymbol{n + 2}}$.

By definition $\boldsymbol{D}_{\boldsymbol{n + 2}}=\lambda \boldsymbol{U} \cdot\left(\boldsymbol{U} \circ \boldsymbol{D}_{\boldsymbol{n + 1}}\right)$. By the inductive assumption and monotonicity, we see that $D_{n+2} \supseteq \lambda U .\left(U \circ D_{n}\right)=D_{n+1}$. Q.E.D.

Theorem. For all $\boldsymbol{n} \in \mathbb{N}$, we have $\boldsymbol{D}_{\boldsymbol{n}} \circ \boldsymbol{D}_{\boldsymbol{n}}=\boldsymbol{D}_{\boldsymbol{n}}$.
Proof. Use induction. $\boldsymbol{D}_{\mathbf{0}} \circ \boldsymbol{D}_{\mathbf{0}}=\boldsymbol{D}_{\mathbf{0}}$ is obvious. So, assume $\boldsymbol{D}_{\boldsymbol{n}} \circ \boldsymbol{D}_{\boldsymbol{n}}=\boldsymbol{D}_{\boldsymbol{n}}$, and try to prove $\boldsymbol{D}_{\boldsymbol{n + 1}} \circ \boldsymbol{D}_{\boldsymbol{n + 1}}=\boldsymbol{D}_{\boldsymbol{n + 1}}$.
We use the definitions: $\quad \boldsymbol{D}_{\boldsymbol{n + 1}} \circ \boldsymbol{D}_{\boldsymbol{n + 1}}=\lambda \boldsymbol{U} \cdot \boldsymbol{D}_{\boldsymbol{n + 1}}\left[\boldsymbol{D}_{\boldsymbol{n + 1}}[\boldsymbol{U}]\right]$

$$
=\lambda U . D_{n+1}\left[U \circ D_{n}\right]
$$

$$
=\lambda U .\left(U \circ D_{n}\right) \circ D_{n}
$$

$$
=\lambda U \cdot U \circ\left(D_{n} \circ D_{n}\right)
$$

$$
=\lambda \boldsymbol{U} \cdot \boldsymbol{U} \circ \boldsymbol{D}_{\boldsymbol{n}}
$$

$$
=D_{n+1}
$$

Q.E.D.

Theorem. For all $n \in \mathbb{N}$, we have $\boldsymbol{D}_{\boldsymbol{n}} \circ \boldsymbol{D}_{\boldsymbol{n}+1}=\boldsymbol{D}_{\boldsymbol{n + 1}}=\boldsymbol{D}_{\boldsymbol{n}+1} \circ \boldsymbol{D}_{\boldsymbol{n}}$.
Proof. Because $\boldsymbol{D}_{\mathbf{0}} \subseteq \boldsymbol{D}_{\boldsymbol{n}}$, we can argue by monotonicity:

$$
D_{n+1}=D_{0} \circ D_{n+1} \subseteq D_{n} \circ D_{n+1} \subseteq D_{n+1} \circ D_{n+1}=D_{n+1}
$$

Hence, the first equation follows. The second equation is proved similarly. Q.E.D.
Corollary. For all $\boldsymbol{n}, \boldsymbol{m} \in \mathbb{N}$ if $\boldsymbol{m} \geq \boldsymbol{n}$, we have $\boldsymbol{D}_{\boldsymbol{n}} \circ \boldsymbol{D}_{\boldsymbol{m}}=\boldsymbol{D}_{\boldsymbol{m}}=\boldsymbol{D}_{\boldsymbol{m}} \circ \boldsymbol{D}_{\boldsymbol{n}}$.
Proof. This is an easy induction. Q.E.D.
Corollary. For all $\boldsymbol{n} \in \mathbb{N}$, we have $\mathcal{D}_{\boldsymbol{n}} \subseteq \mathcal{D}_{\boldsymbol{n + 1}}$.
Proof. Assume $\boldsymbol{U} \mathcal{D}_{\boldsymbol{n}} \boldsymbol{V}$ holds. This means that $\boldsymbol{D}_{\boldsymbol{n}}[\boldsymbol{U}]=\boldsymbol{D}_{\boldsymbol{n}}[\boldsymbol{V}]$. But then:

$$
D_{n+1}\left[D_{n}[U]\right]==D_{n+1}\left[D_{n}[V]\right] .
$$

Then, by our theorem, we see that

$$
D_{n+1}[U]==D_{n+1}[V]
$$

In other words, $\boldsymbol{U} \mathcal{D}_{\boldsymbol{n + 1}} \boldsymbol{V}$ holds. Q.E.D.
We now can derive at once some limiting properties using the equations for the $\boldsymbol{D}_{\boldsymbol{n}}$-operators and continuity. The proofs can safely be left to the reader.

$$
\begin{gathered}
D_{\infty}==\bigcup_{n==0}^{\infty} D_{n} \\
U \mathcal{D}_{\infty} V \Longleftrightarrow D_{\infty}[U]==D_{\infty}[V]
\end{gathered}
$$

Theorem. $D_{\infty} \circ D_{\infty}=D_{\infty}=\lambda U \cdot U \circ D_{\infty}$
Theorem. For all $n \in \mathbb{N}$, we have $\boldsymbol{D}_{\boldsymbol{n}} \circ \boldsymbol{D}_{\infty}=\boldsymbol{D}_{\infty} \circ \boldsymbol{D}_{\boldsymbol{n}}=\boldsymbol{D}_{\infty}$.
Corollary. For all $\boldsymbol{n} \in \mathbb{N}$, we have $\mathcal{D}_{\boldsymbol{n}} \subseteq \mathcal{D}_{\boldsymbol{\infty}}$.
With these \mathcal{D}-equivalence relations, the larger the relation the fewer the distinctions. This "decrease" in structure can be made clearer by picking out canonical representatives of each equivalence class.

$$
\mathbb{D}_{n}=\left\{\boldsymbol{D}_{n}[U] \mid U \in \mathbb{P}\right\} \text { including } n=\infty
$$

Theorem. For all $n \in \mathbb{N} \bigcup\{\infty\}$, we have $\operatorname{Id}\left(\mathbb{D}_{n}\right) \cong \mathcal{D}_{n}$.
Proof. Take any one of these \boldsymbol{D}-operators. The corresponding \mathcal{D}-relation is defined as: $\boldsymbol{U} \mathcal{D} \boldsymbol{V} \Longleftrightarrow \boldsymbol{D}[\boldsymbol{U}]=\boldsymbol{D}[\boldsymbol{V}]$. Because $\boldsymbol{D}=\boldsymbol{D} \circ \boldsymbol{D}$, we see $\boldsymbol{U} \mathcal{D} \boldsymbol{D}[\boldsymbol{U}]$, for all \boldsymbol{U}. We also see that $\boldsymbol{I} \boldsymbol{d}(\mathbb{D}) \subseteq \mathcal{D}$. The desired isomorophisms are thus $D: \mathcal{D} \rightarrow I d(\mathbb{D})$ and $\lambda \boldsymbol{U} \cdot \boldsymbol{U}: I d(\mathbb{D}) \rightarrow \mathcal{D}$. Q.E.D.
Warning. While $\mathcal{D}_{\boldsymbol{n}}$ is a total equivalence relation, $\mathrm{D}_{\boldsymbol{n}}$ is just a PER. (Why?)
Theorem. For all $n \in \mathbb{N}$, we have $\mathbb{D}_{n+1} \subseteq D_{n}$ and $D_{\infty}==\bigcap_{n=0}^{\infty} D_{n}$.
Proof. The first inclusion follows from the equation $\boldsymbol{D}_{\boldsymbol{n}} \circ \boldsymbol{D}_{\boldsymbol{n + 1}}=\boldsymbol{D}_{\boldsymbol{n + 1}}$. That $\mathrm{D}_{\infty} \subseteq \mathrm{D}_{\boldsymbol{n}}$, follows from the equation $\boldsymbol{D}_{\boldsymbol{n}} \circ \boldsymbol{D}_{\infty}=\boldsymbol{D}_{\infty}$. Suppose $\boldsymbol{U} \in \bigcap_{n==0}^{\infty} \mathrm{D}_{\boldsymbol{n}}$. Because $\boldsymbol{D}_{\infty}=\bigcup_{n=0}^{\infty} \boldsymbol{D}_{\boldsymbol{n}}$, we find that $\boldsymbol{D}_{\infty}[\boldsymbol{U}]=\boldsymbol{U} \in \mathrm{D}_{\infty}$. Q.E.D.

We can now establish a key connection between mapping spaces.
Theorem. $\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right) \subseteq \mathcal{D}_{\infty}$
Proof. Suppose that $\boldsymbol{U}\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right) \boldsymbol{V}$. This means that, for all \boldsymbol{X} and \boldsymbol{Y}, if $\boldsymbol{D}_{\infty}[\boldsymbol{X}]==\boldsymbol{D}_{\infty}[\boldsymbol{Y}]$, then $\boldsymbol{U}[\boldsymbol{X}]=\boldsymbol{V}[\boldsymbol{Y}]$. We need to show that $\boldsymbol{D}_{\infty}[U]==\boldsymbol{D}_{\infty}[V]$. But, the equation $\boldsymbol{D}_{\infty}\left[\boldsymbol{D}_{\infty}[X]\right]=\boldsymbol{D}_{\infty}\left[\boldsymbol{D}_{\infty}[X]\right]$ is obviously true. Hence, for all \boldsymbol{X}, we have $\boldsymbol{U}\left[\boldsymbol{D}_{\infty}[\boldsymbol{X}]\right]=\boldsymbol{V}\left[\boldsymbol{D}_{\infty}[\boldsymbol{X}]\right]$. This implies $\boldsymbol{\lambda} \boldsymbol{X} \cdot \boldsymbol{U}\left[\boldsymbol{D}_{\infty}[\boldsymbol{X}]\right]=\boldsymbol{\lambda} \boldsymbol{X} \cdot \boldsymbol{V}\left[\boldsymbol{D}_{\infty}[\boldsymbol{X}]\right]$. But we know that $\boldsymbol{D}_{\infty}[\boldsymbol{U}]=\lambda \boldsymbol{X} . \boldsymbol{U}\left[\boldsymbol{D}_{\infty}[\boldsymbol{X}]\right]$ and $\boldsymbol{D}_{\infty}[\boldsymbol{V}]=\lambda \boldsymbol{X} . \boldsymbol{V}\left[\boldsymbol{D}_{\infty}[\boldsymbol{X}]\right]$. Q.E.D.
Note. It would be nice if we could prove now that $\mathcal{D}_{\infty} \subseteq\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right)$, and, hence, $\mathcal{D}_{\infty}=\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right)$. But this is not true. We can, however, estabilsh an isomorphism. The problem here is that as a $\boldsymbol{P E R} \boldsymbol{\mathcal { D }} \mathcal{D}_{\infty}$ is a total equivalence relation, but $\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right)$ is $\boldsymbol{n o t}$. What we can prove first is this:

Theorem. $\boldsymbol{U}\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right) \boldsymbol{U}$ if, and only if, $\boldsymbol{\lambda} \boldsymbol{X} \cdot \boldsymbol{U}[\boldsymbol{X}]=\boldsymbol{D}_{\infty}[\boldsymbol{U}]$.
Proof. We have the following equivalences:

$$
\begin{aligned}
& U\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right) \boldsymbol{U} \\
& \Leftrightarrow \forall X, Y\left[D_{\infty}[X]=D_{\infty}[Y] \Rightarrow U[X]=U[Y]\right] \\
& \Leftrightarrow \forall X \cdot U[X]=U\left[D_{\infty}[X]\right] \quad(\text { Why? }) \\
& \Leftrightarrow \lambda X \cdot U[X]=\lambda X \cdot U\left[D_{\infty}[X]\right]=D_{\infty}[U]
\end{aligned}
$$

Q.E.D.

Note. The right-hand side of the theorem is not true when $\boldsymbol{U}=\boldsymbol{\lambda} \boldsymbol{X} . \boldsymbol{X}$, as we showed in the last section.
Theorem. $\mathcal{D}_{\infty} \cong\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right)$
Proof. Remember $\mathbb{1}=\lambda \boldsymbol{X} . \boldsymbol{X}$. Owing to the inclusion we did prove, it is clear that $\mathbb{1}:\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right) \rightarrow \mathcal{D}_{\infty}$. (Why?)
For a mapping in the other direction, we will show $\boldsymbol{D}_{\infty}: \mathcal{D}_{\infty} \rightarrow\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right)$.
We note next these equations:

$$
\begin{aligned}
& D_{\infty}\left[D_{\infty}[U]\right] \\
&=D_{\infty}[U] \\
&=\lambda X . U\left[D_{\infty}[X]\right] \\
&=\lambda X . D_{\infty}[U][X] .
\end{aligned}
$$

And, by our previous theorem, $\boldsymbol{D}_{\infty}[\boldsymbol{U}]\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right) \boldsymbol{D}_{\infty}[\boldsymbol{U}]$ then holds for all \boldsymbol{U}.

So, suppose $\boldsymbol{U} \mathcal{D}_{\infty} \boldsymbol{V}$ is true. This means that $\boldsymbol{D}_{\infty}[\boldsymbol{U}]=\boldsymbol{D}_{\infty}[\boldsymbol{V}]$. By what we just proved, $\boldsymbol{D}_{\infty}[\boldsymbol{U}]\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right) \boldsymbol{D}_{\infty}[\boldsymbol{V}]$ must hold, and so $\boldsymbol{D}_{\boldsymbol{\infty}}$ has the right mapping property.

To show we have an isomorphism, we need to establish two facts:

$$
\forall U: \mathcal{D}_{\infty} . D_{\infty}[U] \mathcal{D}_{\infty} U \text { and } \forall \boldsymbol{U}:\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right) . D_{\infty}[U]\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right) \boldsymbol{U}
$$

Inasmuch as $\boldsymbol{D}_{\boldsymbol{\infty}}\left[\boldsymbol{D}_{\boldsymbol{\infty}}[\boldsymbol{U}]\right]=\boldsymbol{D}_{\boldsymbol{\infty}}[\boldsymbol{U}]$, the first fact is clear.
To prove the second, assume that $\boldsymbol{U}\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right) \boldsymbol{U}$. Next, assume $\boldsymbol{D}_{\infty}[\boldsymbol{X}]=\boldsymbol{D}_{\infty}[\boldsymbol{Y}]$. We have these equalities:

$$
\begin{aligned}
D_{\infty}[U][X] & \\
& =U\left[D_{\infty}[X]\right] \\
& =U\left[D_{\infty}[Y]\right] \\
& =D_{\infty}[U][Y] \\
& =U[Y]
\end{aligned}
$$

Thus, $\boldsymbol{D}_{\infty}[\boldsymbol{U}]\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right) \boldsymbol{U}$ holds. Q.E.D.
Theorem. $\left(\mathcal{D}_{\infty} \times \mathcal{D}_{\infty}\right) \cong \mathcal{D}_{\infty} \mid$
Proof. We recall that $\mathbb{P} \times \mathbb{P}=\mathbb{P}$ and so $\mathcal{P} \times \mathcal{P}=\mathcal{P}$. We then argue:

$$
\begin{aligned}
\left(\mathcal{D}_{\infty} \times \mathcal{D}_{\infty}\right) & \cong\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right) \times\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right) \\
& \cong\left(\mathcal{D}_{\infty} \rightarrow(\mathcal{P} \times \mathcal{P})\right) \\
& =\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right) \\
& \cong \mathcal{D}_{\infty} . \quad \text { Q.E.D. }
\end{aligned}
$$

Theorem. $\left(\mathcal{D}_{\infty} \rightarrow \mathcal{D}_{\infty}\right) \cong \mathcal{D}_{\infty} \mid$
Proof. We can now argue:

$$
\begin{aligned}
\left(\mathcal{D}_{\infty} \rightarrow \mathcal{D}_{\infty}\right) & \cong\left(\mathcal{D}_{\infty} \rightarrow\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right)\right) \\
& \cong\left(\left(\mathcal{D}_{\infty} \times \mathcal{D}_{\infty}\right) \rightarrow \mathcal{P}\right) \\
& \cong\left(\mathcal{D}_{\infty} \rightarrow \mathcal{P}\right) \\
& \cong \mathcal{D}_{\infty} . \quad \text { Q.E.D. }
\end{aligned}
$$

Note. The existence of isomorphisms $\left(\mathcal{D}_{\infty} \rightarrow \mathcal{D}_{\infty}\right) \cong \mathcal{D}_{\infty} \cong\left(\mathcal{D}_{\infty} \times \mathcal{D}_{\infty}\right)$ can be used to show that \mathcal{D}_{∞} is a model of the $\lambda \eta$-calculus. This will be spelled out in a later lecture.

