CS263-Spring 2008

Topic 2: Type Theory

Section 7.1: Type Semantics IV

Last edited 10 March 2008

I Modelling (Any)-calculus

m [D-continuity
All we really need fo know about D, can be stated as follows :
1cD=DoD=AU.UeoD

And note we have dropped the co-subscript to simplify writing. We also introduced a PER and a special set associated to
this D:

UDVUoD=VoD
D={UeP|U=UD}={UD|U e P}
Concerning these notions we also proved earlier:
Theorem. Id([D) 2D = (D -» P) = (DXxD) =z (D - D)

Before turning to showing how these properties lead us to a new model of A-calculus, we need to consider how continuous
functions behave on D.

Suppose ®(Xy, X1, ..., Xu—1) i a continuous operator of n-variables.

® is said to be D-continuous provided that

CS263-7.1 edit.nb

& Uy, Uy, ..., U,_1) € D whenever Uy, Uy, ..., U,_1 € D.
A very broad class of operators is [D-continuous:
Theorem. The operator A X.® (Uy[X], U1[X], ..., U,—1[X]) is always [D-continuous.
Proof. It will be sufficient to consider just two variables and to show:
AX.®(U[X], V[X]D € D whenever U, V € D.

Assume we have U, V € ID. We then calculate:

AX.oU[X], VIX]))eD

= AX.®WU[D[X]], VIDIX]D

= 2AX.®(U-D[X], VoDI[X])

=AX.®U[X], VIX]) e D.
Q.E.D.

We can conclude at once from this result that many operators have the desired continuity property.

m Pairing, application and abstraction
Theorem. The following operators are [D-continuous:
(U, V)) = AX.UIX], VIXII,
Ist(W) = A X.1st[W[X]], and
2nd(W) = A X.2 nd[W[X]].
Note. Everything here has been written as operators rather than as combinators in P.

Recall that [P x [P = [P. Properties of the underlying pairing can now be lifted from [P to [D. The proofs should be obvi-
ous. (Why?)

Theorem. For U,V,WeD we have:
Ist((U, V) =U,
2nd(((U, V))) =V, and
((Ast(W), 2nd(W))) = W.

Note. Any continuous operator ®(Uy, Uy, ..., U,—1) can be made into a D-continuous one by changing it to
@ (Uy, Uy, ...y Uy—1)oD. This cheap trick does not necessarily mean that the new operator has inferesting properties,

however. We need to use the device in the next two definitions, nevertheless.
Take note of a special property of the elements of D.
Theorem. If U € D, then U == A X. U[X].

Proof. Under the assumption we find:

CS263-7.1 edit.nb

AX.U[X]

== AX.(U°D)[X]

= A X.U[D[X]]

=UoD==2U
QED.

We can now give the two basic definitions of the new A-calculus. And read the strange symbol £ as "fancy 1" to distin-
guish it from the ordinary A we have used for P. We have do this work since it is not the case that D is closed under the
ordinary application operator F[U]. (Why?)

FUIl = QV.FI(U, V))DeD
£U.9U, Vy, Vi, ...) = A W.Q(Ast(W), Vy, Vi, ..)2nd(W)])e D
Note. The D in the above equations can be brought inside. For example, the first equation could have been written as:

FIUl =AV.F[((U, D[VD)].

Note, too, it does not matter which variable we use in defining £ U. (Why?)

m The conversion rules

Our first main task is to verify that D models F-conversion under these definitions.

Note. In the next theorem we write ®(U) instead of ®(U, V,, V7, ...) just to save space and to save writing in the formu-
lac. The longer form is what is intended, however.

Theorem. Assuming that ®(U) is D-continuous and W € D, we have
EU.o))W] =2(W).
Proof. We have to compute using the definitions:

EU.oU)IW]

= AV.EU.oO))[((W, V)DeD

= AV.(AZ.2Ast(Z)[2nd(Z)]) o D)I(W, V))DeD

= AV.(AZ.2Ast(DIZ])[2nd(DIZDD)W, DIVD)D
= A V. edst(DI(W, DIVDID)[2nd(DI(W, D[V])D]
= A V. edst((W, DIVD)))[2nd((W, DIVD))]

= AV.o(W)[D[V]]

= QAV.o(W)[VDeD

=®(W)eD

= o(W)

Q.E.D.
Our next main task is to verify that D models n-conversion under our definitions.
Theorem. Assuming that F € D, we have £ U. F[U] = F.

Proof. We have to compute using the definitions:

CS263-7.1 edit.nb

£U.F[U]

= AW.F[Ist(W)][2nd(W)])oD

= A W(QAV.F[(Ast(W), V))D e D)[2nd(W)])e D
= AW.AV.F[(dst(W), DIVD)D[2nd(W)])o D
= A W.F[(Ast(W), D2nd(W)])]) oD

= AW.F[(Ast(D[W]), D[2nd(D[WD])]

= A W.F[(Ast(D[W]), 2nd(D[W])))]

= AW.F[D[W]]

=FoD

Q.E.D.

Our next main task is to verify that D models y-conversion under our definitions.
Theorem. Assuming that U, V, W € D, we have (U, V))[W] = (U[W], VIW])).
Proof. We have to compute using the definitions:

W, Viwl

=QZ.(U, V)W, 2)DD

= QAZ.LUI(W, D), VI(W, Z))1])°D
= AZ.LU[((W, DIZ])), VI((W, DIZ])1]
= AZ.LUIWIIDIZ]], VIWIIDIZ]1]

= (AZ.LUIWIIZ], VIWIIZ]1) D

= ((UIWI, VIWI) D

= ((UIWI, VIWI)

Q.E.D.

As a direct consequence of this theorem we can prove another tidy equation.

Theorem. Assuming that ®(U) and ¥(U) are D-continuous, we have:
£U.(@W), ¥)) = (£U.2), £U.¥))).

Proof. We have these equations:

(£U. o), £U.¥)))
=£L£V.(£U.o), £U.YO))IVI]
=£V.(£U.oO)[VI], €U.¥O)HIVD)
=£V.(®(V), ¥(V)))

=£U.(®W), ¥(U)))

Q.E.D.
Here is another useful theorem following a definition.
UeV =£Z.UIVIZI]
Theorem. Assuming that U, V, W € D, we have (U, V))e W = (Ue W, VeW)).

Proof. We have these equations:

CS263-7.1 edit.nb

W, V)ew

=£Z.((U, V) [WIZ]]

= £Z.(UIWIZIT, V IWIZID)

= ((£Z.UWIZII, £ Z.V [WIZI])
=((UeW,VeW))

Q.ED.

Bibliographical Notes. The (A8y)-calculus was introduced and discussed in the book Lambda-Calculus, Combinators,
and Functional Programming by G.E. Revesz, x + 188 pp., Cambridge University Press, 1988, ISBN 0-521-34589-8.
The book discusses LISP and other list-processing ideas, including the language FP of John Backus described most fully
in his article Can programming be liberated from the von Neumann style? A functional style and its algebra of programs,
pp- 63-130 in 1966 to 1985: ACM Turing Award Lectures, The First Twenty Years, xviii + 483 pp., ACM Press and
Addison-Wesley Publishing Co., 1987, ISBN 0-201-07794-9. The model presented here is a simplified form of that
worked out as a M.Sc. Thesis by Glenn Durfee in a Carnegie-Mellon Techincal Report, A model for a list-oriented exten-
sion of the lambda calculus, 29 pp., CMU-CS-97-151, May 1997.

m Lattice-theoretic properties

The model D has many properties under inclusion (€) similar to those of P. We note without proof, for example, that
K[@] is the smallest element of D, while K[N] == N is the largest. (Why?)

Theorem. Assuming that U, V € D,thenUJV € D.
Proof. We have these equations:
vyv
=UeD)U (VeD)
= AX.U[DIXID U AX.VID[X]])
= AX.(UIDIX]1U VIDIX]D

=AX.(UUWIDIX]]
={UUV)eD

Q.ED.

Note. This theorem can easily be generalized to infinite unions. Hence, [D-continuous operators have their least fixed
points in D. The author has not checked whether the so-called paradoxical combinator defined in terms of £-abstraction
and [[-application gives the expected least fixed point. It seems reasonable to conjecture that it does.

Theorem. Assuming that U, V € ID,then UV € D.
Proof. We have these equations:

unv

= AX.UIX]NAX.V[X]

= AX.(U[X] N VIXD)

= AX.(UIDIX]] N VIDIX]D
= QAX.(UIXINVIX])eD

But that is enough to give the conclusion. (Why?) Q.E.D.

Theorem. Assuming that ®(U) and ¥(U) are D-continuous, we have:

CS263-7.1 edit.nb

£U.0U)C £ U.‘I‘(U)<=>V UeD.®U) c¥W).

Proof. We have these equivalences:

Q.E.D.

Y UebD.oW) c¥W)

=Y Uvueb.Y X eP.oW)[X] C ¥U)[X]

=Y UuebD.Y X e P.oU)[DIX]] € ¥W)[D[X]]
=Yueb.YVebD.oW)V]c¥U)V]

=Y W eD. odst(W)[2nd(W)] C ¥(st(W))[2nd(W)]

=Yw. e(Ist(D[W])[2nd(D[W]D] € ¥Ast(D[W])[2nd(D[W])]
& AW. oIst(DIWD)[2nd(DIWD] S AW ¥dst(D[W])[2nd(D[W])]
&= QAW. ddst(W)[2nd(W)])oD € AW ¥dst(W))[2nd(W)])o D
S L£U.OU) C £U.¥U)

