
CS 263-Spring 2008
Design and Analysis of Programming Languages

• Instructor: Dana Scott
<danas@eecs.berkeley.edu>

• TA: Sridhar Ramesh <sramesh@berkeley.edu>

Last edited 13 February 2008

Suggested Projects

PROJECT 0. Topics for discussion. (no credit)
Start collecting short, succint answers to these questions. We will find a way to post answers on a discussion
group.

Think also of some additional general questions about programming languages. Send Prof. Scott your suggestions
to <danas@eecs.berkeley.edu>.

 (1) What good are programming language?

 (2) Which are the good programming languages?

 (3) How does one choose a programming language?

 (4) How does one design a programming language?

 (5) Do we need more programming languages?

 (6) What is the role of a compiler?

 (7) Can programming be made independent of the machine platform?

 (8) What are virtual machines?

 (9) What is the difference between distributed and parallel computing?

(10) How do we know that a program is correct?

(11) How do we know that a compiler is correct?

(11) How do we know that a compiler is correct?

(12) What use are types in programming languages?

(13) Do compilers need to know about types?

(14) Why are versions of FORTRAN and COBAL still in use?

(15) Are some programming languages better than others for team work?

(16) How valid is the "equation" Algorithms + DataStructures ã Programs these days?

(17) What is Literate Programming?

(18) Do some languages promote good programming or beautiful programming better than others?

(19) What is the difference between abstract syntax and concrete syntax ?

(20) Can a language be both a functional language as well as an imperitive language ?

PROJECT 1. What good are combinators? (**** 4 stars)

‡ Assumptions

• Suppose it were possible to implement well the computations with combinators on an abstract (= virtual) machine ~ and
to do this on many platforms.

• Suppose it were also possible to build a generic compiler for your favorite language producing code for the virtual
machine.

‡ Claim

• Then you would have both flexibility and a clear-cut handle on correctness and verifiability.

‡ Project

• Defend or dispute this claim by searching on the web for: combinator abstract machine and categorical abstract
machine.

‡ Notes

• There are many Google hits for both searches. And these hits will lead to other searches.

• Take into account that more current work concentrates on typed languages.

2 CS263-Projects-2edit.nb

PROJECT 2. Are there better pairing functions? (*** 3 stars)

‡ Background

• In class, in order to give a quick introduction to Gödel numbers it was remarked that the pairs Xp, q\ of integers
(including 0) were in a one-one correspondence with the positive numbers of the form 2p H2 q + 1L.
• The problem with using the exponential encoding of pairs to encode syntax is that the numbers grow too quickly: even
small combinators have astronomically large Gödel numbers.

‡ Project

• Find a better encoding of pairs to use with Gödel numbers so that the growth is reduced.

• Express the method in terms of combinators.

• Is there an easily stated bound on the Gödel number of a combinator in terms of the length of the combinator?

‡ Hint

• Pairs of integers can be counted either by growing triangles or squares. Either method should give reasonable results.

PROJECT 3. How fast is Ackermann? (*** 3 stars)

‡ Background

Recursion equations for the function discovered by Ackermann can be given as:

ackH0, nL  n + 1
ackHm + 1, 0L  1
ackHm + 1, n + 1L  ackHm, ackHm + 1, nLL

‡ Project

• Explain briefly why is ack a total recursive function.

• Find in the literature (or on the WWW) a proof that ack is not primitive recursive.

• (Extra credit) Find a combinator for ack computing on the Church numerals.

CS263-Projects-2edit.nb 3

PROJECT 4. How to simulate lists? (* 1 star)

‡ Background

In class we were able to calculate with combinators and pairs of objects using the combinators pair, left, right.

‡ Project

Find combinators to simulate finite lists. Each list should have a length. If possible set things up so if L represents the list
XA1, A2, …, An\, then L@cnum@iDD reduces to Ai. Perhaps, L@zeroD could reduce to the length

of the list, but other conventions are possible.

PROJECT 5. Closure under composition (* 1 star)

‡ Background

• It is easy to see that the monotone operators on sets of integers are closed under composition.

‡ Project

 • Work out the proof that continuous operators (of any number of arguments) are closed under composition.

‡ Hint

• Try a simple case such as F(Y(X, Y), Q(X, Y)) first.

‡ Extra credit (* 1 extra star)

• Can you use some results about the semantics of combinators in  to prove this?

PROJECT 6. Application as an operator (* 1 star)

‡ Background

• In showing that  is a model of the rules of combinators, we had to define application and l-abstraction using sets of
integers.

4 CS263-Projects-2edit.nb

‡ Project

• Using the definitions, show explicitly that not only is U@XD continuous, but we have

 lX.FHX, Y0, Y1, …, Yn-1L@XD ä FHX, Y0, Y1, …, Yn-1L
 for every continuous operator F.

PROJECT 7. S as an operator (* 1 star)

‡ Project

• Prove that S  l X. lY. lZ. X@ZD@Y@ZDD Œ  .

PROJECT 8. Partial recursive functions (** 2 stars)

‡ Background

• If f :  1  is a partial function mapping (some of the) integers to integers, then there is a obvious related continuous
operator F:Ø defined by:

FHXL  8 f HxL » x Œ X<.
• Because we take n  8n< for n Œ , note that FHnL  f HnL, if f HnL is defined ~ otherwise the value is ∅.

‡ Project

 • Prove that every partial recursive function p :  1  there is a set P Œ  such that P@nD  pHnL for all n Œ .

PROJECT 9. The $20 Prize Problem (**** 4 stars)

‡ Project

• Find the fewest and neatest recursive sets R1, …, Rn such that all recursively enumerable sets can be generated from
them by the binary U@XD operator.

‡ Adjudication

• The class will vote on the best solution. Teamwork is permitted.

‡ Time Frame

CS263-Projects-2edit.nb 5

‡

Time Frame

• Solutions due by class time on Wednesday, 20 February, 2008.

PROJECT 10. Other fixed points (* 1 star)

‡ Project

• Suppose FHXL is a continuous operator, and A Õ  is such that A Õ FHAL. Is there a fixed point P of F with A Õ P?
And is there a least such?

‡ Extra credit (* 1 extra star)

• Using the continuous operator A ‹ X, find a way of defining P also using some combinators.

PROJECT 11. Sequences and fixed points (* 1 star)

‡ Background

• We defined the set of sequence numbers of sequences with all terms belonging to a set X as X*  8s » Õ s Õ X<. This is a
continuous operator.

‡ Project

• Explain using least fixed points the meaning of this operator : Y¶  Y ‹ HY¶L*.

PROJECT 12. Finding other models (*** 3 stars)

‡ Project

• Show that there are many other models for the crules between  and  also using the same U@XD operation.

PROJECT 13. Some set-theoretical properties (** 2 stars)

‡ Project

• Prove the following two theorems:

Theorem. For U, V, X Œ  and for continuous operators F and Y we have:

 U@XD ‹ V@XD  HU ‹ VL@XD and l X. HF HXL ‹ Y HXLL l X.F HXL ‹ l X.Y HXL .

6 CS263-Projects-2edit.nb

Theorem. For U, V, X Œ  and for continuous operators F and Y we have:

 U@XD ‹ V@XD  HU ‹ VL@XD and l X. HF HXL ‹ Y HXLL l X.F HXL ‹ l X.Y HXL .
Theorem. For for continuous operators F and Y we have:

 l X. HF HXL › YHXLL l X.F HXL › l X.Y HXL .
• Give a counter-example with finite U and V to show that the first equation for unions does not hold for intersections.

‡ Extra credit (* 1 star)

• Show (quickly) why both theorems can be generalized to operators of more variables.

• Show that the theorem about unions can be generalized to infinite unions.

• Why can we not generalize the intersection result to infinite intersections?

PROJECT 14. Simutaneous equations (** 2 stars)

‡ Project

• Given two computable and continuous operators FHX, YL and YHX, YL, each of two arguments, show that the least
solutions to the pair of equations:

X  FHX, YL and Y  YHX, YL
are indeed in .

• Does the method generalize to more variables?

‡ Hint

• Take advantage of combinators pair, left, right as interpreted by our semantics as sets in .

PROJECT 15. Formal-language theory (** 2 stars)

‡ Background

• With our approach to coding sequences, the set  of non-negative integers can be viewed as well as the set *of all finite
sequences of integers.

• To relate our constructions to what is usually done in formal-language theory (hereafter called FLT), we should identify
first an alphabet. This is easy, as we just take the one-termed sequences as our (infinite) alphabet. In fact, define:

  8Xn\ » n Œ <  X\  82 n + 1 » n Œ <.
And, to have a mnemonic we define the set of strings over our alphabet:

 *  .

CS263-Projects-2edit.nb 7

• To relate our constructions to what is usually done in formal-language theory (hereafter called FLT), we should identify
first an alphabet. This is easy, as we just take the one-termed sequences as our (infinite) alphabet. In fact, define:

  8Xn\ » n Œ <  X\  82 n + 1 » n Œ <.
And, to have a mnemonic we define the set of strings over our alphabet:

 *  .

• Now the above use of * is not what is usually meant in FLT. We need to say that for all sets X Õ  we can define a new
operator:

X¯  8X\< ‹ IX¯[XM.
This defines the least set of strings containing the given set X and closed under concatenation. We can now say   ¯,
as is normal in FLT.

• To jibe further with standard FLT notation, we should also write e  X\, and, for s, t Œ , we may write st  s[t.
Hence, for sets X, Y Õ , we use (just for this project) the shorthand notation X Y  X[Y. We also use the shorthand
s X  8s< X.

‡ Project

• For given s, t Œ , prove that there is a unique solution to this fixed-point equation:

X  8s, t< ‹s X ‹ X t.

• For fixed-point equations like this, explain on general principles we have developed why the least fixed points must be
. (Of course, automata theory can show why many such equations have recursive solutions.)

• Does this pair of equations have a unique pair of solutions:

X  8s< ‹ X Y and Y  8t< ‹ Y X ?

And what are these sets?

8 CS263-Projects-2edit.nb

