
CS 268: Lecture 12
(Router Design)

Ion Stoica
March 18, 2002

istoica@cs.berkeley.edu 2

Midterm Exam (March 20): Sample
Questions

! E2E principle
- Describe the end-to-end principle. Give one example in which

implementing a particular functionality at a lower layer breaks
this principle, and one example in which it does not. Explain.

! Fair Queueing
- (a) What problem does Fair Queueing address? Describe the

Fair Queuing algorithm.
- (b) What is the system virtual time and what it is used for?

! Differentiated Services
- Compare Assured and Premium services. How is each of

them implemented at edge and core routers?

istoica@cs.berkeley.edu 3

IP Router

! A router consists
- A set of input interfaces at which packets arrive
- A se of output interfaces from which packets depart

! Router implements two main functions
- Forward packet to corresponding output interface
- Manage congestion

.

.. .
..

istoica@cs.berkeley.edu 4

Generic Router Architecture

! Input and output interfaces
are connected through a
backplane

! A backplane can be
implemented by

- Shared memory
• Low capacity routers (e.g.,

PC-based routers)
- Shared bus

• Medium capacity routers
- Point-to-point (switched) bus

• High capacity routers

input interface output interface

Inter-
connection

Medium
(Backplane)

istoica@cs.berkeley.edu 5

Speedup

! C – input/output link capacity
! RI – maximum rate at which an

input interface can send data
into backplane

! RO – maximum rate at which an
output can read data from
backplane

! B – maximum aggregate
backplane transfer rate

! Back-plane speedup: B/C
! Input speedup: RI/C
! Output speedup: RO/C

input interface output interface

Inter-
connection

Medium
(Backplane)

C CRI ROB

istoica@cs.berkeley.edu 6

Function division

! Input interfaces:
- Must perform packet

forwarding – need to know to
which output interface to
send packets

- May enqueue packets and
perform scheduling

! Output interfaces:
- May enqueue packets and

perform scheduling

input interface output interface

Inter-
connection

Medium
(Backplane)

C CRI ROB

istoica@cs.berkeley.edu 7

Three Router Architectures

! Output queued
! Input queued
! Combined Input-Output queued

istoica@cs.berkeley.edu 8

Output Queued (OQ) Routers

! Only output interfaces
store packets

! Advantages
- Easy to design algorithms:

only one congestion point
! Disadvantages

- Requires an output speedup
of N, where N is the number
of interfaces " not feasible

input interface output interface

Backplane

CRO

istoica@cs.berkeley.edu 9

Input Queueing (IQ) Routers
! Only input interfaces store packets
! Advantages

- Easy to built
• Store packets at inputs if

contention at outputs
- Relatively easy to design algorithms

• Only one congestion point, but not
output…

• need to implement backpressure
! Disadvantages

- Hard to achieve utilization " 1 (due to
output contention, head-of-line
blocking)

• However, theoretical and
simulation results show that for
realistic traffic an input/output
speedup of 2 is enough to
achieve utilizations close to 1

input interface output interface

Backplane

CRO

istoica@cs.berkeley.edu 10

Combined Input-Output Queueing
(CIOQ) Routers

! Both input and output
interfaces store packets

! Advantages
- Easy to built

• Utilization 1 can be achieved
with limited input/output
speedup (<= 2)

! Disadvantages
- Harder to design algorithms

• Two congestion points
• Need to design flow control

- Note: recent results show that
with a input/output speedup of 2,
a CIOQ can emulate any work-
conserving OQ [G+98,SZ98]

input interface output interface

Backplane

CRO

istoica@cs.berkeley.edu 11

Generic Architecture of a High
Speed Router Today

! Combined Input-Output Queued Architecture
- Input/output speedup <= 2

! Input interface
- Perform packet forwarding (and classification)

! Output interface
- Perform packet (classification and) scheduling

! Backplane
- Point-to-point (switched) bus; speedup N
- Schedule packet transfer from input to output

istoica@cs.berkeley.edu 12

Backplane

! Point-to-point switch allows to simultaneously
transfer a packet between any two disjoint pairs of
input-output interfaces

! Goal: come-up with a schedule that
- Meet flow QoS requirements
- Maximize router throughput

! Challenges:
- Address head-of-line blocking at inputs
- Resolve input/output speedups contention
- Avoid packet dropping at output if possible

! Note: packets are fragmented in fix sized cells
(why?) at inputs and reassembled at outputs

- In Partridge et al, a cell is 64 B (what are the trade-offs?)

istoica@cs.berkeley.edu 13

Head-of-line Blocking

! The cell at the head of an input queue cannot be
transferred, thus blocking the following cells

Cannot be
transferred
because output
buffer full

Cannot be transferred because
is blocked by red cell

Output 1

Output 2

Output 3

Input 1

Input 2

Input 3

istoica@cs.berkeley.edu 14

Solution to Avoid Head-of-line
Blocking

! Maintain at each input N virtual queues, i.e., one
per output

Output 1

Output 2

Output 3

Input 1

Input 2

Input 3

istoica@cs.berkeley.edu 15

Cell transfer

! Schedule:
- Ideally: find the maximum number of input-output pairs such that:

• Resolve input/output contentions
• Avoid packet drops at outputs
• Packets meet their time constraints (e.g., deadlines), if any

! Example
- Assign cell preferences at inputs, e.g., their position in the input queue
- Assign cell preferences at outputs, e.g., based on packet deadlines, or

the order in which cells would depart in a OQ router
- Match inputs and outputs based on their preferences

! Problem:
- Achieving a high quality matching complex, i.e., hard to do in constant

time

istoica@cs.berkeley.edu 16

A Case Study
[Partridge et al ’98]

! Goal: show that routers can keep pace with
improvements of transmission link bandwidths

! Architecture
- A CIOQ router
- 15 (input/output) line cards: C = 2.4 Gbps

• Each input card can handle up to 16 (input/output)
interfaces

• Separate forward engines (FEs) to perform routing
- Backplane: Point-to-point (switched) bus, capacity B = 50 Gbps

(32 MPPS)
• B/C = 20, but 25% of B lost to overhead (control) traffic

istoica@cs.berkeley.edu 17

Router Architecture

packet
header

istoica@cs.berkeley.edu 18

Router Architecture

11

1515

input interface output interfaces

Backplane

forward engines Network
processor
Network

processor

Data in
Data out

Control data
(e.g., routing)

Update
routing
tables Set scheduling

(QoS) state

istoica@cs.berkeley.edu 19

Router Architecture: Data Plane

! Line cards
- Input processing: can handle input links up to 2.4 Gbps (3.3

Gbps including overhead)
- Output processing: use a 52 MHz FPGA; implements QoS

! Forward engine:
- 415-MHz DEC Alpha 21164 processor, three level cache to

store recent routes
• Up to 12,000 routes in second level cache (96 kB); ~ 95% hit

rate
• Entire routing table in tertiary cache (16 MB divided in two

banks)

istoica@cs.berkeley.edu 20

Router Architecture: Control Plane

! Network processor: 233-MHz 21064 Alpha running
NetBSD 1.1

- Update routing
- Manage link status
- Implement reservation

! Backplane Allocator: implemented by an FPGA
- Schedule transfers between input/output interfaces

istoica@cs.berkeley.edu 21

Data Plane Details: Checksum

! Takes too much time to verify checksum
- Increases forwarding time by 21%

! Take an optimistic approach: just incrementally
update it

- Safe operation: if checksum was correct it remains
correct

- If checksum bad, it will be anyway caught by end-host
! Note: IPv6 does not include a header checksum

anyway!

istoica@cs.berkeley.edu 22

Data Plane Details: Slow Path
Processing

1. Headers whose destination misses in the cache
2. Headers with errors
3. Headers with IP options
4. Datagrams that require fragmentation
5. Multicast datagrams

! Requires multicast routing which is based on source
address and inbound link as well

! Requires multiple copies of header to be sent to
different line cards

istoica@cs.berkeley.edu 23

Control Plane: Backplane Allocator

! Time divided in epochs
- An epoch consists of 16 ticks of data clock (8 allocation clocks)

! Transfer unit: 64 B (8 data click ticks)
! During one epoch, up to 15 simultaneous transfers in an epoch

- One transfer: two transfer units (128 B of data + 176 auxiliary bits)
! Minimum of 4 epochs to schedule and complete a transfer but

scheduling is pipelined.
1. Source card signals that it has data to send to the destination card
2. Switch allocator schedules transfer
3. Source and destination cards are notified and told to configure

themselves
4. Transfer takes place

! Flow control through inhibit pins

istoica@cs.berkeley.edu 24

The Switch Allocator Card

! Takes connection requests from function cards
! Takes inhibit requests from destination cards
! Computes a transfer configuration for each epoch
! 15X15 = 225 possible pairings with 15! Patterns

istoica@cs.berkeley.edu 25

Allocator Algorithm

istoica@cs.berkeley.edu 26

The Switch Allocator

! Disadvantages of the simple allocator
- Unfair: there is a preference for low-numbered sources
- Requires evaluating 225 positions per epoch, which is

too fast for an FPGA
! Solution to unfairness problem: Random shuffling

of sources and destinations
! Solution to timing problem: Parallel evaluation of

multiple locations
! Priority to requests from forwarding engines over

line cards to avoid header contention on line
cards

istoica@cs.berkeley.edu 27

Summary: Design Decisions
(Innovations)

1. Each FE has a complete set of the routing
tables

2. A switched fabric is used instead of the
traditional shared bus

3. FEs are on boards distinct from the line cards
4. Use of an abstract link layer header
5. Include QoS processing in the router

