
CS 268: Lectures 13/14
(Route Lookup and Packet

Classification)
Ion Stoica

April 1/3, 2002

istoica@cs.berkeley.edu 2

Lookup Problem

! Identify the output interface to forward an incoming
packet based on its destination address

! Routing (forwarding) tables summarize information
by maintaining prefixes

! Route lookup " find the longest prefix in the table
that matches the packet destination address

istoica@cs.berkeley.edu 3

Example

! Packet with destination address 12.82.100.101 is sent to
interface 2, as 12.82.100.xxx is the longest prefix matching
packet’s destination address

……

312.82.xxx.xxx
1128.16.120.xxx

1

2128.16.120.111

12.82.100.101

12.82.100.xxx 2

istoica@cs.berkeley.edu 4

Patricia Tries

! Use binary tree paths to encode prefixes

! Advantage: simple to implement
! Disadvantage: one lookup may take O(m), where

m is number of bits (32 in the case of IPv4)

001xx 2
0100x 3
10xxx 1
01100 5

0 1

0

1 0

1

1

0

0

0

0

2

3

5

1

istoica@cs.berkeley.edu 5

Lulea’s Routing Lookup Algorithm

! Minimize number of memory accesses
! Minimize size of data structure

- Small size allow to fit entire data structure in the cache
(why do you care about size?)

! Solution: use a three level data structure

istoica@cs.berkeley.edu 6

First Level: Bit-Vector

! Cover all prefixes down to depth 16
! Use one bit to encode each prefix

- Memory requirements: 216 = 64 Kb = 8 KB

genuine heads

root heads

istoica@cs.berkeley.edu 7

First Level: Pointers

! Maintain 16-bit pointers to (1) next-hop (routing)
table or (2) to two level chuncks

- 2 bits encode pointer type
- 14 bits represent an index into routing table or into an

array containing level two chuncks
! Pointers are stored at consecutive memory

addresses
! Problem: find the pointer

istoica@cs.berkeley.edu 8

Example

…

pointer
array

Routing
table

Level two chunks

0006abcd

bit vector …

000acdef

1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 Problem:
find
pointer

istoica@cs.berkeley.edu 9

Code Word and Base Indexes Array
! Split the bit-vector in bit-masks (16 bits each)
! Find corresponding bin-mask
! How?

- Maintain a16-bit code word for each bit-mask (10-bit value; 6-bit offset)
- Maintain a base index array (one 16-bit entry for each 4 code words)

number of previous ones in the bit-vector

Code word array

Base index array

Bit-vector

istoica@cs.berkeley.edu 10

First Level: Finding Pointer Group

! Use first 12 bits to index into code word array
! Use first 10 bits to index into base index array

address: 004C
first 12 bits

4
1

first 10 bits

+ = 13

Code word array

Base index array

istoica@cs.berkeley.edu 11

First Level: Encoding Bit-masks

! Observation: not all 16-bit values are possible
- Example: bit-mask 1001… is not possible (why?)

! Let a(n) be number of bit-masks of length 2n

! Compute a(n) using recurrence:
- a(0) = 1
- a(n) = 1 + a(n-1)2

! For length 16, we get only 677 possible values for bit-
masks

! This can be encoded in 10 bits
- Values ri in code words

! Store all possible bit-masks in a table, called maptable

istoica@cs.berkeley.edu 12

First Level: Finding Pointer Index
! Each entry in Maptable is an offset of 4 bits:

- Offset of pointer in the group
! Number of memory accesses: 3 (7 bytes accessed)

istoica@cs.berkeley.edu 13

First Level: Memory Requirements

! Code word array: one code word per bit-mask
- 64 Kb

! Based index array: one base index per four bit-
mask

- 16 Kb
! Maptable: 677x16 entries, 4 bits each

- ~ 43.3 Kb
! Total: 123.3 Kb = 15.4 KB

istoica@cs.berkeley.edu 14

First Level: Optimizations

! Reduce number of entries in Maptable by two:
- Don’t store bit-masks 0 and 1; instead encode pointers

directly into code word
- If r value in code word larger than 676 " direct

encoding
- For direct encoding use r value + 6-bit offset

istoica@cs.berkeley.edu 15

Levels 2 and 3

! Levels 2 and 3 consists of chunks
! A chunck covers a sub-tree of height 8 " at most

256 heads
! Three types of chunks

- Sparse: 1-8 heads
• 8-bit indices, eight pointers (24 B)

- Dense: 9-64 heads
• Like level 1, but only one base index (< 162 B)

- Very dense: 65-256 heads
• Like level 1 (< 552 B)

! Only 7 bytes are accessed to search each of
levels 2 and 3

istoica@cs.berkeley.edu 16

Limitations

! Only 214 chuncks of each kind
- Can accommodate a growth factor of 16

! Only 16-bit base indices
- Can accommodate a growth factor of 3-5

! Number of next hops <= 214

istoica@cs.berkeley.edu 17

Notes

! This data structure trades the table construction
time for lookup time (build time < 100 ms)

- Good trade-off because routes are not supposed to
change often

! Lookup performance:
- Worst-case: 101 cycles

• A 200 MHz Pentium Pro can do at least 2 millions
lookups per second

- On average: ~ 50 cycles
! Open question: how effective is this data

structure in the case of IPv6 ?

istoica@cs.berkeley.edu 18

Classification Problem

! Classify an IP packet based on a number of fields
in the packet header, e.g.,

- source/destination IP address (32 bits)
- source/destination port number (16 bits)
- TOS byte (8 bits)
- Type of protocol (8 bits)

! In general fields are specified by range

istoica@cs.berkeley.edu 19

Example of Classification Rules

! Access-control in firewalls
- Deny all e-mail traffic from ISP-X to Y

! Policy-based routing
- Route IP telephony traffic from X to Y via ATM

! Differentiate quality of service
- Ensure that no more than 50 Mbps are injected from

ISP-X

istoica@cs.berkeley.edu 20

Characteristics of Real Classifiers

! Results are collected over 793 packet classifiers
from 101 ISPs, with a total of 41,505 rules

- Classifiers do not contain many rules: mean = 50 rules,
max = 1734 rules, only 0.7% contain over 1000 rules

- Many fields are specified by range, e.g., greater than
1023, or 20-24

- 14% of classifiers had a rule with a non-contiguous
mask !

- Rules in the same classifier tend to share the same
fields

- 8% of the rules are redundant, i.e., they can be
eliminated without changing classifier’s behavior

istoica@cs.berkeley.edu 21

Example
! Two-dimension space (i.e., classification based on two

fields)
! Complexity depends of the layout (i.e., how many distinct

regions are created)

istoica@cs.berkeley.edu 22

Hard Problem

! Even if regions don’t overlap, with n rules and F
fields we have the following lower-bounds

• O(log n) time and O(nF) space
• O(log F-1 n) time and O(n) space

istoica@cs.berkeley.edu 23

Simplifying Assumptions

! In practice, you get the average not the worst-
case, e.g., number of overlapping regions for the
largest classifier 4316 vs. theoretical worst case
10 13

! The number of rules is reasonable small, i.e., at
most several thousands

! The rules do not change often

istoica@cs.berkeley.edu 24

Recursive Flow Classification (RFC)
Algorithm

! Problem formulation:
- Map S bits (i.e., the bits of all the F fields) to T bits (i.e.,

the class identifier)
! Main idea:

- Create a 2S table with pre-computed values; each entry
would contain the class identifier

• Only one memory access needed
- …but this is impractical " require huge memory

istoica@cs.berkeley.edu 25

RFC Algorithm
! Use recursion: trade speed (number of memory

accesses) for memory footprint

istoica@cs.berkeley.edu 26

The RFC Algorithm

! Split the F fields in chuncks

! Use the value of each chunck to index into a
table

- Indexing is done in parallel
! Combine results from previous phase, and repeat
! In the final phase we obtain only one value

istoica@cs.berkeley.edu 27

Example of Packet Flow in RFC

istoica@cs.berkeley.edu 28

Complete Example

! Four fields " six chunks
- Source and destination IP addresses " two chuncks each
- Protocol number " one chunck
- Destination port number " one chunck

istoica@cs.berkeley.edu 29

Complete Example

indx=c02*6+c03*3+c05

indx=c10*5+c11

istoica@cs.berkeley.edu 30

indx=c10*5+c11

istoica@cs.berkeley.edu 31

RFC Lookup Performance

! Dataset: classifiers used in practice
! Hardware: 31.25 millions pps using three stage

pipeline, and 4-bank 64 Mb SRAMs at 125 MHz
! Software: > 1million pps on a 333 MHz Pentium

istoica@cs.berkeley.edu 32

RFC Scalling

! RFC does not handle well large (general) classifiers
- As the number of rules increases, the memory requirements

increase dramatically, e.g., for 1500 rules you may need over
4.5 MB with a three stage classifier

! Proposed solution: adjacency groups
- Idea: group rules that generate the same actions and use same

fields
- Problems: can’t tell which rule was matched

istoica@cs.berkeley.edu 33

Summary

! Routing lookup and packet classification " two of the
most important challenges in designing high speed
routers

! Very efficient algorithms for routing lookup "
possible to do lookup at the line speed

! Packet classification still an area of active research
! Key difficulties in designing packet classification:

- Requires multi-field classification which is an inherently hard
problem

- If we want per flow QoS insertion/deletion need also to be
fast

• Harder to make update-lookup tradeoffs like Lulea’s
algorithm

istoica@cs.berkeley.edu 34

RFC Algorithm: Example
! Phase 0:

- Possible values for destination
port number: 80, 20-21,
>1023, *

• Use two bits to encode
• Reduction: 16"2

- Possible values for protocol:
udp, tcp, *

• Use two bits to encode
• Reduction: 8"2

! Phase 1:
- Concatenate from phase 1,

five possible values: {80,udp},
{20-21,udp}, {80,tcp},
{>1023,tcp}, everything else

• Use three bits to encode
• Reduction 4"3

