CS 268: Network Security

Kevin Lai April 17, 2002

Motivation and Problem

- networks used for many critical services
 - financial transactions, journalism, business operations, etc.
- networks more open than ever before
 - global, ubiquitous Internet, wireless
- must prevent malicious users (examples?) from
 - reading data (privacy)
 - pretending to be someone else (authentication)
 - doing something without permission (authorization)
 - modifying transmitted data (integrity)
 - claiming they did not send a message (nonrepudiation)
 - denying service to other users (preventing denial-of-service)
- reduce key distribution problem
- detect a compromise by a malicious user (intrusion detection)

Privacy

- Prevent eavesdropper from reading message
- Encryption
 - Message M, key K, encryption algorithm E
 - $E(M,K) = \{M\}^{K}$
 - Given M^K, difficult to get M unless you have K
 - The more data encrypted and sent using K, the greater likelihood K can be deduced
 - K should be changed periodically
- Symmetric keys: DES, 3DES, blowfish, AES
 - $E(M,K) = \{M\}^{K}, D(\{M\}^{K},K) = M$
 - K must be kept secret

Public/Asymmetric Keys

- K must be exchanged through secure medium
 - how to bootstrap?
- Asymmetric keys/public keys: DH, RSA, DSA
 - PK: Public Key, SK: Secret Key
 - $E(M,SK) = \{M\}^{SK}, D(\{M\}^{SK},PK) = M$
 - $E(M,PK) = \{M\}^{PK}, D(\{M\}^{PK},SK) = M$
 - DES 100 times faster than RSA in software
 - Typically, PK/SK used to exchange symmetric key, which is used for the conversation
 - PK can be exchanged "in the clear" (problem?)

Authentication

- Validate a mapping between two entities
 - alice@cs.berkeley.edu \leftrightarrow Alice
 - www.whitehouse.gov↔Whitehouse of USA
 - www.whitehouse.com↔entertainment provider (not Whitehouse of USA)
- Solutions
 - Passwords
 - Encryption
 - Biometrics

Integrity

- Verify that a message has not been modified
 - much stronger than checksum (difference?)
- Message digest/ characteristic function/ one-way hash: MD5, SHA
 - H(M) = h
 - h, H \neq > M (inversion resistance)
 - M ≠> M', s.t. H(M)=H(M')
 - \neq > M, M', s.t. H(M)=H(M') (collision resistance)
 - Additional mechanism to prevent attacker from also modifying hash
 - encrypt h, or
 - h = H(M,K), K is a secret key known by both sender and receiver

More Security

- Nonrepudiation
 - Prevent the sender from falsely denying he/she sent a message
 - Digital signatures
- Preventing denial of service
 - discussed later

More Security

- Intrusion Detection
 - described later
- Authorization (not discussed)
 - Determine if a user is allowed to do something
 - credit card authenticates a person
 - stores checks with the credit card company for spending limit authorization

Key Distribution Problem

- Many of the previous algorithms rely on keys
- How do two parties securely get keys to do privacy, authentication, etc.?
- Set up a secure connection using different key
 - How to bootstrap?
- Out-of-band key distribution
 - Floppy disk, piece of paper, telephone, etc.
 - High latency, wastes human time
- Must be done whenever key is compromised, entity is added, keys expire

Needham and Schroeder

- Addresses key distribution problem
- Reduces number of keys distributed out-of-band
- Assumes malicious user can read, modify, drop, and fabricate messages

Interactive Connection, Symmetric Key

1) $A \rightarrow AS$: A,B,I_{A1} to get CK from AS no encryption 2) AS \rightarrow A: $\{I_{\Delta 1}, B, CK, \{CK, A\}^{KB}\}^{KA}$ to send CK to A Encrypted with KA so only A can read it and so A knows it came from AS I_{A1} so that A knows this isn't a replay (why?) B so that A knows this isn't a man in middle attack (why?)

Interactive Connection, Symmetric Key

- 3) A→B: {CK,A}^{KB}
 - to send CK to B

encrypted with KB so that B knows it came from the AS and A is authenticated

- 4) $B \rightarrow A$: { I_B }^{CK}
- 5) A→B: {I_B-1}^{CK}

so B can determine if 3) is a replay

Interactive Connection, Symmetric Key

- What if CK is compromised?
 - Attacker
 - listens to previous conversation between A and B
 - breaks CK eventually
 - spoofs A, sends copy of messages 3,4,5 to B
 - Add timestamp to messages:
 - 2) AS \rightarrow A: {I_{A1},B,CK,{CK,A,TS}^{KB}}^{KA}
 - 3) $A \rightarrow B$: {CK,A,TS}^{KB}
 - B ignores if TS is too old
 - Need synchronized clock (why?)
 - How to secure clock synchronization protocol?

Interactive Connection, Asymmetric key

1) $A \rightarrow AS$: A.B to get PKB from AS 2) AS→A: {PKB,B}^{SKAS} to send PKB to A assume that A knows PKAS securely encryption for integrity not privacy B so that A knows 1) was good $\{I_{\Delta},A\}^{\mathsf{PKB}}$ 3) A→B: tells B that A wants to talk

Interactive Connection, Asymmetric key

- 4) $B \rightarrow AS$: B,A
- 5) AS \rightarrow B: {PKA,A}^{SKAS}
 - Same as 1) and 2)
- 6) $B \rightarrow A$: { I_A, I_B }^{PKA}

Prevent replay from B to A

7) A \rightarrow B: {I_B}^{PKB}

Prevent replay from A to B

Interactive Connection Comparison

- Messages sent
 - Symmetric key: 5, 3 with caching
 - Asymmetric key: 7, 3 with caching
 - Caching introduces vulnerabilities
 - key could have been compromised
- AS security
 - Symmetric key: must have privacy, integrity
 - Asymmetric key: needs only integrity

Advantages

- Resists some attacks
 - Eavesdropping
 - Replay
- Reduces number of persistent keys
 - Symmetric: n instead of n² (n: number of hosts)
 - Asymmetric: 2n + 2 instead of n²
- Reduces out-of-band key distribution
 - Symmetric/asymmetric: n instead of n²

Problems

- Authentication Server
 - Single point of failure
 - Could be compromised, crashed, overloaded
 - Must be securely administered
 - Must have administrator trusted by all principals
 - Adding principals requires contacting administrators \rightarrow very slow
- Inter-domain communication
 - each domain has separate authentication server
 - Reverts to n² key distribution or
 - hierarchy of domains
 - parent domains must be trusted by child domains
 - Must go through administrator

Conclusion

- Systems derived from Needham-Schroeder
 - Kerberos
 - Popular in large centralized organizations
 - Centralized structure does not suit Internet
 - SSL
 - Used for secure TCP connections
- Key distribution is still a hard problem
 - many systems more vulnerable to key distribution attacks than crypto failure

```
The authenticity of host 'host.domain.com (10.0.0.1)' can't be established.RSA key fingerprint is be:3c:a3:8f:6d:70:32:78:e1:df:68:0f:ec:d2:f4:19.
```

Are you sure you want to continue connecting (yes/no)?

Denial of Service

- Huge problem in current Internet [MVS01]
 - Yahoo!, Amazon, eBay, CNN, Microsoft attacked
 - 12,000 attacks on 2,000 organizations in 3 weeks
 - some more that 600,000 packets/second
 - more than 192Mb/s
 - most documented perpetrators are determined teenagers using freely available tools
 - consider if the attacker is a large, well-funded group of professionals using secret tools
 - may have already happened
 - preventing deployment of critical applications
 - medical, energy, transportation

Problem: 0wning

- Attacker compromises a large number of hosts
 - 1M compromised hosts is plausible
- exploits security flaws in OS and applications
 - bugs, e.g., buffer overruns ("strcpy(dest, src);")
 - poor security policy, e.g., automatically executed email attachments
 - crypto, authentication systems do not prevent
 - firewalls do not prevent email viruses
- hosts usually have high bandwidth connections (e.g., DSL)

Problem: Attack

- Compromised hosts send TCP SYN packets to target
 - sent at max rate with spoofed source address
 - more sophisticated attacks possible
 - attack DNS, BGP
 - reflection
 - cause one non-compromised host to attack another
 - examples?
- Affect on target host
 - may crash or slow down drastically
 - connection to the Internet is saturated

Dealing with Attack

- distinguish attack from flash crowd (why?)
- prevent damage [M+01]
 - distinguish attack traffic from legitimate traffic
 - rate limit attack traffic
- stop attack
 - identify attacking machines
 - shutdown attacking machines
 - usually done manually, requires cooperation of ISPs, other users
- identify attacker
 - very difficult, except
 - usually brags/gloats about attack on IRC
 - also done manually, requires cooperation of ISPs, other users

Incomplete Solutions

- Fair queueing (why?)
- Integrated Services and Differentiated Services (why?)
- RSVP (why?)
- Quality of service mechanisms usually assume that users are selfish, but not malicious

Identifying Attacking Machines

- Defeat spoofed source addresses
- Does not stop or slow attack
- Egress filtering
 - a domain's border router drop outgoing packets which do not have a valid source address for that domain
 - if universal, could abolish spoofing (why isn't it universal?)
- IP Traceback [many proposals]
 - similar to DPS
 - routers probabilistically tag packets with an identifier
 - destination can infer path to true source after receiving enough packets

Aggregate Congestion Control [M+01]

- goal: prevent damage from both attacks and flash crowds
- distinguish attack traffic from legitimate traffic
 - identify an aggregate of flows causing many drops
- limit aggregate
 - decide on bandwidth that limits drops
- convey decision to up stream routers
 - so up stream routers do not waste bandwidth delivering traffic that will be dropped

Distinguishing Aggregates

- Cluster together flows
- Too specific: does not affect drop rate (why?)
- Not specific enough: slow down legitimate traffic
- Cluster attributes: source/dest addr, source/dest port
- Examples
 - dest: cnn.com (+/-?)
 - dest: cnn.com/port 80 (+/-?)
 - dest: cnn.com/port 80, src: dosrus.com
- Clustering algorithm may have to be kept secret
- Current solutions use heuristics
 - open research problem

Pushback

- Convey information about high rate aggregate up stream
 - Why not necessary for flash crowd?
 - Why is it necessary for upstream routers to drop traffic?
 - Why do upstream routers need notification from downstream routers?

Pushback Issues

- Necessary if downstream router cannot identify aggregate
- Attack may still be too broad to distinguish
- Why would upstream routers trust downstream routers in different domains?

Conclusions

- Most significant problem in Internet today
- Traditional solutions ineffective
 - QoS, crytography, authentication
- Pushback provides general framework for solution
- Many problems remain

Network Intrusion Detection System (NIDS)

- Goal: automatically detect unauthorized access to hosts over the network
 - assume attacker has already compromised system
 - exploited inevitable flaws in system
 - bugs
 - compromised keys, passwords because of user mistakes
- maintain database of rules
 - e.g., "host X should never allow remote access", "host Y should only be sent valid DNS queries"
- capture packets at border router and compare with database
- notify administrator in real time or automatically block intruder

Network Intrusion Detection Issues

- Why use NIDS in addition to firewall
 - NIDS doesn't block traffic, so it can protect hosts outside of firewall
 - Firewall doesn't prevent all forms of intrusion (e.g. email virus)
- Accuracy
 - rules are too general \rightarrow too many false positives
 - rules are too specific \rightarrow intruders undetected
- Fundamental rules
 - rules specific to application implementation \rightarrow rule must change when application changes
 - application generic rules are difficult to formulate
 - e.g., interactive traffic can be characterized by distribution of human inter-character typing interval

- Little advantage for interactive communication
 - most people connect to only a fraction of the hosts in a domain \rightarrow n is small
 - many hosts share same keys \rightarrow n is small
 - user changes set of hosts with distinct keys infrequently
 - with PK, user can collect all PKs (n) and copy them to all hosts (n) \rightarrow 2n key distribution instead of n^2