
CS 268: Network Security
Kevin Lai

April 17, 2002



laik@cs.berkeley.edu 2

Motivation and Problem

! networks used for many critical services
- financial transactions, journalism, business operations, etc.

! networks more open than ever before
- global, ubiquitous Internet, wireless

! must prevent malicious users (examples?) from
- reading data (privacy)
- pretending to be someone else (authentication)
- doing something without permission (authorization)
- modifying transmitted data (integrity)
- claiming they did not send a message (nonrepudiation)
- denying service to other users (preventing denial-of-service)

! reduce key distribution problem
! detect a compromise by a malicious user (intrusion 

detection)



laik@cs.berkeley.edu 3

Privacy

! Prevent eavesdropper from reading message
! Encryption

- Message M, key K, encryption algorithm E
• E(M,K) = {M}K

- Given MK, difficult to get M unless you have K
- The more data encrypted and sent using K, the greater 

likelihood K can be deduced
• K should be changed periodically

! Symmetric keys: DES, 3DES, blowfish, AES
- E(M,K) = {M}K, D({M}K,K) = M
- K must be kept secret



laik@cs.berkeley.edu 4

Public/Asymmetric Keys

! K must be exchanged through secure medium
- how to bootstrap?

! Asymmetric keys/public keys: DH, RSA, DSA
- PK: Public Key, SK: Secret Key
- E(M,SK) = {M}SK, D({M}SK,PK) = M
- E(M,PK) = {M}PK, D({M}PK,SK) = M
- DES 100 times faster than RSA in software
- Typically, PK/SK used to exchange symmetric key, 

which is used for the conversation
- PK can be exchanged “in the clear” (problem?)



laik@cs.berkeley.edu 5

Authentication

! Validate a mapping between two entities
- alice@cs.berkeley.edu↔Alice
- www.whitehouse.gov↔Whitehouse of USA
- www.whitehouse.com↔entertainment provider (not 

Whitehouse of USA)
! Solutions

- Passwords
- Encryption
- Biometrics



laik@cs.berkeley.edu 6

Integrity

! Verify that a message has not been modified
- much stronger than checksum (difference?)

! Message digest/ characteristic function/ one-way 
hash: MD5, SHA
- H(M) = h
- h, H ≠> M (inversion resistance)
- M ≠> M’, s.t. H(M)=H(M’)
- ≠> M, M’, s.t. H(M)=H(M’) (collision resistance)
- Additional mechanism to prevent attacker from also 

modifying hash
• encrypt h, or
• h = H(M,K), K is a secret key known by both sender 

and receiver



laik@cs.berkeley.edu 7

More Security

! Nonrepudiation
- Prevent the sender from falsely denying he/she sent a 

message
- Digital signatures

! Preventing denial of service
- discussed later



laik@cs.berkeley.edu 8

More Security

! Intrusion Detection
- described later

! Authorization (not discussed)
- Determine if a user is allowed to do something

• credit card authenticates a person
• stores checks with the credit card company for 

spending limit authorization



laik@cs.berkeley.edu 9

Key Distribution Problem

! Many of the previous algorithms rely on keys
! How do two parties securely get keys to do 

privacy, authentication, etc.?
! Set up a secure connection using different key

- How to bootstrap?
! Out-of-band key distribution

- Floppy disk, piece of paper, telephone, etc.
- High latency, wastes human time

! Must be done whenever key is compromised, 
entity is added, keys expire



laik@cs.berkeley.edu 10

Needham and Schroeder

! Addresses key distribution problem
! Reduces number of keys distributed out-of-band
! Assumes malicious user can read, modify, drop, 

and fabricate messages



laik@cs.berkeley.edu 11

Interactive Connection, Symmetric 
Key

1) A→AS: A,B,IA1

to get CK from AS
no encryption

2) AS →A: {IA1,B,CK,{CK,A}KB}KA

to send CK to A
Encrypted with KA so only A can read it and so 
A knows it came from AS
IA1 so that A knows this isn’t a replay (why?)
B so that A knows this isn’t a man in middle 
attack (why?)



laik@cs.berkeley.edu 12

Interactive Connection, Symmetric 
Key

3) A→B: {CK,A}KB

to send CK to B
encrypted with KB so that B knows it came from 
the AS and A is authenticated

4) B→A: {IB}CK

5) A→B: {IB-1}CK

so B can determine if 3) is a replay



laik@cs.berkeley.edu 13

Interactive Connection, Symmetric 
Key

! What if CK is compromised?
- Attacker

• listens to previous conversation between A and B
• breaks CK eventually
• spoofs A, sends copy of messages 3,4,5 to B

- Add timestamp to messages:
2) AS→A: {IA1,B,CK,{CK,A,TS}KB}KA

3) A→B: {CK,A,TS}KB

B ignores if TS is too old
- Need synchronized clock (why?)

• How to secure clock synchronization protocol?



laik@cs.berkeley.edu 14

Interactive Connection, Asymmetric 
key

1) A→AS: A,B
to get PKB from AS

2) AS→A: {PKB,B}SKAS

to send PKB to A
assume that A knows PKAS securely
encryption for integrity not privacy
B so that A knows 1) was good

3) A→B: {IA,A}PKB

tells B that A wants to talk



laik@cs.berkeley.edu 15

Interactive Connection, Asymmetric 
key

4) B→AS: B,A
5) AS→B: {PKA,A}SKAS

Same as 1) and 2)
6) B→A: {IA,IB}PKA

Prevent replay from B to A
7) A→B: {IB}PKB

Prevent replay from A to B



laik@cs.berkeley.edu 16

Interactive Connection Comparison

! Messages sent
- Symmetric key: 5, 3 with caching
- Asymmetric key: 7, 3 with caching
- Caching introduces vulnerabilities

• key could have been compromised
! AS security

- Symmetric key: must have privacy, integrity
- Asymmetric key: needs only integrity



laik@cs.berkeley.edu 17

Advantages

! Resists some attacks
- Eavesdropping
- Replay

! Reduces number of persistent keys
- Symmetric: n instead of n2 (n: number of hosts)
- Asymmetric: 2n + 2 instead of n2

! Reduces out-of-band key distribution
- Symmetric/asymmetric: n instead of n2



laik@cs.berkeley.edu 18

Problems

! Authentication Server
- Single point of failure

• Could be compromised, crashed, overloaded
- Must be securely administered

• Must have administrator trusted by all principals
• Adding principals requires contacting administrators →

very slow
! Inter-domain communication

- each domain has separate authentication server
- Reverts to n2 key distribution or
- hierarchy of domains

• parent domains must be trusted by child domains
- Must go through administrator



laik@cs.berkeley.edu 19

Conclusion

! Systems derived from Needham-Schroeder
- Kerberos

• Popular in large centralized organizations
• Centralized structure does not suit Internet

- SSL
• Used for secure TCP connections

! Key distribution is still a hard problem
- many systems more vulnerable to key distribution attacks 

than crypto failure
The authenticity of host ‘host.domain.com (10.0.0.1)‘ 
can't be established.RSA key fingerprint is 
be:3c:a3:8f:6d:70:32:78:e1:df:68:0f:ec:d2:f4:19.

Are you sure you want to continue connecting (yes/no)?



laik@cs.berkeley.edu 20

Denial of Service

! Huge problem in current Internet [MVS01]
- Yahoo!, Amazon, eBay, CNN, Microsoft attacked
- 12,000 attacks on 2,000 organizations in 3 weeks
- some more that 600,000 packets/second

• more than 192Mb/s
- most documented perpetrators are determined 

teenagers using freely available tools
• consider if the attacker is a large, well-funded group 

of professionals using secret tools
• may have already happened

- preventing deployment of critical applications
• medical, energy, transportation



laik@cs.berkeley.edu 21

Problem: 0wning

! Attacker compromises a large number of hosts
- 1M compromised hosts is plausible

! exploits security flaws in OS and applications
- bugs, e.g., buffer overruns (“strcpy(dest, src);”)
- poor security policy, e.g., automatically executed email 

attachments
- crypto, authentication systems do not prevent
- firewalls do not prevent email viruses

! hosts usually have high bandwidth connections 
(e.g., DSL)



laik@cs.berkeley.edu 22

Problem: Attack

! Compromised hosts send TCP SYN packets to 
target

- sent at max rate with spoofed source address
- more sophisticated attacks possible

• attack DNS, BGP
• reflection

❢ cause one non-compromised host to attack another
❢ examples?

! Affect on target host
- may crash or slow down drastically
- connection to the Internet is saturated



laik@cs.berkeley.edu 23

Dealing with Attack

! distinguish attack from flash crowd (why?)
! prevent damage [M+01]

- distinguish attack traffic from legitimate traffic
- rate limit attack traffic

! stop attack
- identify attacking machines
- shutdown attacking machines
- usually done manually, requires cooperation of ISPs, other 

users
! identify attacker

- very difficult, except
- usually brags/gloats about attack on IRC
- also done manually, requires cooperation of ISPs, other users



laik@cs.berkeley.edu 24

Incomplete Solutions

! Fair queueing (why?)
! Integrated Services and Differentiated Services 

(why?)
! RSVP (why?)
! Quality of service mechanisms usually assume 

that users are selfish, but not malicious



laik@cs.berkeley.edu 25

Identifying Attacking Machines

! Defeat spoofed source addresses
! Does not stop or slow attack
! Egress filtering

- a domain’s border router drop outgoing packets which 
do not have a valid source address for that domain

- if universal, could abolish spoofing (why isn’t it 
universal?)

! IP Traceback [many proposals]
- similar to DPS
- routers probabilistically tag packets with an identifier
- destination can infer path to true source after receiving 

enough packets



laik@cs.berkeley.edu 26

Aggregate Congestion Control 
[M+01]

! goal: prevent damage from both attacks and flash 
crowds

! distinguish attack traffic from legitimate traffic
- identify an aggregate of flows causing many drops

! limit aggregate
- decide on bandwidth that limits drops

! convey decision to up stream routers
- so up stream routers do not waste bandwidth delivering 

traffic that will be dropped



laik@cs.berkeley.edu 27

Distinguishing Aggregates

! Cluster together flows
! Too specific: does not affect drop rate (why?)
! Not specific enough: slow down legitimate traffic
! Cluster attributes: source/dest addr, source/dest port
! Examples

- dest: cnn.com (+/-?)
- dest: cnn.com/port 80 (+/-?)
- dest: cnn.com/port 80, src: dosrus.com

! Clustering algorithm may have to be kept secret
! Current solutions use heuristics

- open research problem



laik@cs.berkeley.edu 28

Pushback

! Convey information 
about high rate 
aggregate up stream

- Why not necessary for 
flash crowd?

- Why is it necessary for 
upstream routers to drop 
traffic?

- Why do upstream routers 
need notification from 
downstream routers?

A CB

Pushback

Rate Limiting



laik@cs.berkeley.edu 29

Pushback Issues

! Necessary if 
downstream router 
cannot identify 
aggregate

! Attack may still be too 
broad to distinguish

! Why would upstream 
routers trust 
downstream routers in 
different domains?

?

A CB

A-Z A-Z

A-Z

D

E



laik@cs.berkeley.edu 30

Conclusions

! Most significant problem in Internet today
! Traditional solutions ineffective

- QoS, crytography, authentication
! Pushback provides general framework for 

solution
! Many problems remain



laik@cs.berkeley.edu 31

Network Intrusion Detection System 
(NIDS)

! Goal: automatically detect unauthorized access to hosts 
over the network

- assume attacker has already compromised system
- exploited inevitable flaws in system

• bugs
• compromised keys, passwords because of user mistakes

! maintain database of rules
- e.g., “host X should never allow remote access”, “host Y 

should only be sent valid DNS queries”
! capture packets at border router and compare with 

database
! notify administrator in real time or automatically block 

intruder



laik@cs.berkeley.edu 32

Network Intrusion Detection Issues

! Why use NIDS in addition to firewall
- NIDS doesn’t block traffic, so it can protect hosts outside of 

firewall
- Firewall doesn’t prevent all forms of intrusion (e.g. email virus)

! Accuracy
- rules are too general → too many false positives
- rules are too specific → intruders undetected

! Fundamental rules
- rules specific to application implementation → rule must 

change when application changes
- application generic rules are difficult to formulate
- e.g., interactive traffic can be characterized by distribution of 

human inter-character typing interval



laik@cs.berkeley.edu 33

- Little advantage for interactive communication
• most people connect to only a fraction of the hosts 

in a domain → n is small
• many hosts share same keys → n is small
• user changes set of hosts with distinct keys 

infrequently
❢ with PK, user can collect all PKs (n) and copy them to 

all hosts (n) → 2n key distribution instead of n2


