CS 268: Multicast Transport

Kevin Lal
April 24, 2001



The Goal

« Transport protocol for multicast
- Reliability
« apps: file distribution, non-interactive streaming
- Low delay
e apps: conferencing, distributed gaming
- Congestion control for multicast flows
e critical for all applications

laik@cs.berkeley.edu



Reliability: The Problems

Assume reliability through retransmission

- even with FEC, may still have to deal with retransmission
(Why?)

Sender can not keep state about each receiver

- e.g., what receivers have received, RTT

- number of receivers unknown and possibly very large
Sender can not retransmit every lost packet

- even if only one receiver misses packet, sender must
retransmit, lowering throughput

Estimating path properties is difficult

- must estimate RTT to set retransmit timers

- unicast algorithms (e.g., TCP) don't generalize to trees
N(ACK) implosion

- described next

laik@cs.berkeley.edu



(N)ACK Implosion

« (Positive) acknowledgements
- ack every n received packets
- what happens for multicast?
= Negative acknowledgements
- only ack when data is lost
- assume packet 2 is lost

O—

laik@cs.berkeley.edu



NACK Implosion

« When a packet is lost all receivers in the sub-tree
originated at the link where the packet is lost send
NACKSs

(=

laik@cs.berkeley.edu



Application Layer Framing (ALF)

« [Clark and Tennenhouse 90]
= Application should define Application Data Unit
(ADU) to lower layers
- ADU is unit of error recovery
e app can recover from whole ADU loss
e app treats partial ADU loss/corruption as whole loss
- App names ADUs
- App can process ADUs out of order
- Small ADUs (e.g., a packet): low delay, keep app busy

- Large ADUs (e.g., a file): more efficient use of bw and
cycles

- Lower layers can minimize delay by passing ADUs to
apps out of order

laik@cs.berkeley.edu



Scalable Reliable Multicast (SRM)
[Floyd et al '95]

» Recelvers use timers to send NACKS and
retransmissions

- randomized
e prevent implosion
- uses latency estimates

 short timer — cause duplicates when there is
reordering

 long timer — causes excess delay

= Any node retransmits
- sender can use its bandwidth more efficiently
- overall group throughput is higher

« Duplicate NACK/retransmission suppression

laik@cs.berkeley.edu



Inter-node Latency Estimation

» Every node estimates latency to
every other node

- uses session reports (< 5% of
bandwidth)

e assume symmetric latency

e what happens when group
becomes very large?

laik@cs.berkeley.edu

dapg = (-t —d)/2




Repair Request Timer Randomization

= Chosen from the uniform distribution on

2[Cds 4, (C, +C,)ds 4]

A — node that lost the packet
S— source
C,, C, — algorithm parameters
- dg, — latency between S and A
| — iteration of repair request tries seen
= Algorithm
- Detect loss - set timer

- Receive request for same data - cancel timer, set new timer,
possibly with new iteration

- Timer expires - send repair request

laik@cs.berkeley.edu



Timer Randomization

= Repair timer similar
- every node that receives repair request sets repair timer
- latency estimate is between node and node requesting repair
« Timer properties
- Minimize probability of duplicate packets
» reduce likelihood of implosion (duplicates still possible)

0 poor timer, randomized granularity
o high latency between nodes

- Reduce delay to repair

nodes with low latency to sender will send repair request
more quickly

nodes with low latency to requester will send repair more
quickly

when is this sub-optimal?

laik@cs.berkeley.edu 10



Chain Topology

= All link distances are 1

source

data out
of order

—» data/repair

request —> request repair
repair request TO
e repair TO

laik@cs.berkeley.edu 11



Star Topology

. Cl = Dl = O,
Tradeoff between (1) number of requests
and (2) time to receive the repair source
C,<=1

- E(# of requests) = g-1
C,>1

- E(# of requests) = 1+ (g-2)/C,

- E(time until first timer expires) = 2C,/g
C,=+9

- E(# of requests) = \/5

- E(time until first timer expires) = /g

laik@cs.berkeley.edu 12



Bounded Degree Tree

Use both

- Deterministic suppression (chain topology)
- Probabilistic suppression (star topology)

Large C,/C, = fewer duplicate requests, but larger
repair time

Large C, = fewer duplicate requests
Small C, - smaller repair time

laik@cs.berkeley.edu

13



Adaptive Timers

« C and D parameters depends on topology and congestion -
choose adaptively

« After sending a request:
- Decrease start of request timer interval

« Before each new request timer Is set:
- If requests sent in previous rounds, and any dup requests were from
further away:
» Decrease request timer interval
- Else if average dup requests high:
* Increase request timer interval
- Else if average dup requests low and average request delay too high:

» Decrease request timer interval

laik@cs.berkeley.edu 14



Local Recovery

« Some groups are very large with low loss correlation
between nodes

- Multicasting requests and repairs to entire group wastes
bandwidth

« Separate recovery multicast groups
- e.g. hash sequence number to multicast group address
- only nodes experiencing loss join group
- recovery delay sensitive to join latency
« TTL-based scoping
- send request/repair with a limited TTL
- how to set TTL to get to a host that can retransmit

- how to make sure retransmission reaches every host that
heard request

laik@cs.berkeley.edu

15



Multicast Congestion Control
Problem

« Unicast congestion control:

- send at rate not exceeding smallest fair share of all
links along a path

« Multicast congestion control:

- send at minimum of unicast fair shares across all
receivers

e problem: what if receivers have very different
bandwidths?

- segregate receivers into multicast groups according to
current available bandwidth

laik@cs.berkeley.edu

16



Issues

« What rate for each group?
= How many groups?
« How to join and leave groups?

laik@cs.berkeley.edu

17



Assumptions

= a video application

- can easily make size/quality tradeoff in encoding of
application data (i.e., a 10Kb video frame has less
guality than a 20Kb frame)

- separate encodings can be combined to provide better
guality

e e.g., combine 5Kb + 10Kb + 20Kb frames to provide
greater quality than just 20Kb frames

» 6 layers
« 32x2' kb/s for the ith layer

laik@cs.berkeley.edu 18



Example of Size/Quality Tradeoff

3457 bytes 5372 bytes 30274 bytes

laik@cs.berkeley.edu

19



Basic Algorithm

= Join a new layer when there is no congestion
- joining may cause congestion
- join infrequently when the join is likely to falil

= drop largest layer when there is congestion

- congestion detected through drops
- could use explicit feedback, delay

= how frequently to attempt join?
= how to scale up to large groups?

laik@cs.berkeley.edu

20



Join Timer

X X >d X

= Set 2 timers for each layer
- use randomization to prevent synchronization
- join timer expires — join next larger layer

- detect congestion - drop layer, increase join timer, update
detection timer with time since last layer add

- detection timer expires — decrease join timer for this layer

- Layers have exponentially increasing size — multiplicative
Increase/decrease (?)

= All parameters adapt to network conditions

laik@cs.berkeley.edu

21



Scaling Problems

» Independent joins do not scale

- frequency of joins increase with group size -
congestion collapse (why?)

- joins interfere with each other - unfairness

« Could reduce join rate
- convergence for large groups will be slow

laik@cs.berkeley.edu

22



Scaling Solution

Multicast join
announcement

node initiates join iff
current join is for higher
layer

congestion — backs off its
own timer to join that layer

- shares bottleneck with
joiner
no congestion - joins
new layer iff it was
original joiner
- does not share
bottleneck with joiner

convergence could still be
slow (why?)

congestion

® @

L,

jon14i
Ll
N

laik@cs.berkeley.edu

jon12T

C
(&

}backoﬁ

23



Simulation Results

« Higher network latency - less stability
- congestion control is control problem

- control theory predicts that higher latency causes less
stability

= NoO cross traffic
« Scales up to 100 nodes

laik@cs.berkeley.edu

24



Performance

Priority-drop and Uniform-drop

Ideal

-------------------------------- Priority

Uniform

B Load

[McCanne, Jacobson 1996]

Uniform drop

- drop packets randomly from
all layers

Priority drop

- drop packets from higher
layers first

Sending rate <= bottleneck

- no loss, no difference in
performance

Sending rate > bottleneck

- important, low layer packets
may be dropped - uniform
drop performance decreases

Convex utility curve — users
encouraged to remain at
maximum

laik@cs.berkeley.edu 25



Later Work Contradicts

Ideal

Performancef=======================-==-----2

Priority

Uniform

B

Load |

[McCanne, Jacobson 1996]
= Burstiness of traffic results in better performance for priority drop

- 50-100% better performance

Performance

Ideal

B Load

[Bajaj, Breslau, Shenker 1998]

- measured in throughput, not delay

= Neither has good incentive properties
- n flows, P(drop own packet) = 1/n, P(drop other packet) = (n-1)/n
- need Fair Queueing for good incentive properties

laik@cs.berkeley.edu 26



Discussion

= Could this lead to congestion collapse?

« Do SRM/RLM actually scale to millions of nodes?
- Session announcements of SRM

« Does RLM generalize to reliable data transfer?
- What if layers are independent?
- What about sending the file multiple times?

» |s end-to-end reliability the way to go?
- What about hop-by-hop reliability?

laik@cs.berkeley.edu

27



Summary

« Multicast transport is a difficult problem

= One can significantly improve performance by
targeting a specific application
- e.g., bulk data transfer or video
« Depend on Multicast routing working

laik@cs.berkeley.edu

28



Resilient Multicast: STORM
|[Rex et al "97]

» Targeted applications: continuous-media
applications

- E.g., video and audio distribution

« Resilience

Receivers don’'t need 100% of data
Packets must arrive in time for repairs
Data is continuous, large volume

Old data is discarded

laik@cs.berkeley.edu

29



Design Implications

» Recovery must be fast
- SRM not appropriate (why?)
» Protocol overhead should be small
« No ACK collection or group management

laik@cs.berkeley.edu

30



Solution

= Build an application recovery structure
- Directed acyclic graph that span the set of receiver
e Does not include routers!
- Typically, a receiver has multiple parents
- Structure is built and maintained dsitributedly

« Properties
- Responsive to changing conditions
- Achieve faster recovery
- Reduced overhead

laik@cs.berkeley.edu

31



Detalls

« Use multicast (expanding ring search) to find parents

« When there is a gap in sequence number send a
NACK

- Note: unlike SRM in which requests and repairs are
multicast, with STORM NACKSs and repairs are unicast

» Each node maintain

List of parent nodes

A quality estimator for each parent node

A delay histogram for all packets received
A list of timers for NACKs sent to the parent
A list of NACKSs note served yet

Note: excepting the list of NACKs shared by parent-child all
other info is local

laik@cs.berkeley.edu

32



Choosing a Parent

« What is a good parent?
- Can send repairs in time
- Has a low loss correlation with the receiver

A
X— 1009 ===~ ===============mmmssoooo
Expected
packel T NACK S
arrival \ e/
©
2
(«b]
B (replay | D
ti g
ime
Packet .- Cumulative distribution

layback :
piay _ of received packets
laik@cs.berkeley.edu 33



Choosing a Parent

« Source stamps each packet to local time
= t,— adjusted arrival time, where
- t, = packet stamp — packet arrival time
- Each node compute loss rate as a function of t;
_ number of packetssuchthatt, <t
total umber of packetsexpected

L(t) =1

« Choose parent that maximizes the number of
received packets by time t,+ B

laik@cs.berkeley.edu

34



Loop Prevention

» Each receiver is assigned a level
« Parent’s level < child’s level

= Level proportional to the distance from source

- Use RTT + a random number to avoid to many nodes
on the same level

laik@cs.berkeley.edu

35



Adaptation

« Receivers evaluate parents continually

« Choose a new parent when one of current
parents doesn’t perform well

= Observations:

- Changing parents is easy, as parents don’t keep track
of children

- Preventing loops is easy, because the way the levels
are assigned

- Thus, no need to maintain consistent state such as
child-parent relationship

laik@cs.berkeley.edu 36



