
# CS 268: Overlay Networks: Introduction and Multicast

Kevin Lai April 29, 2001

## Definition

- Network
  - defines addressing, routing, and service model for communication between hosts
- Overlay network
  - A network built on top of one or more existing networks
  - adds an additional layer of indirection/virtualization
  - changes properties in one or more areas of underlying network
- Alternative
  - change an existing network layer



## **A Historical Example**

- Internet is an overlay network
  - goal: connect local area networks
  - built on local area networks (e.g., Ethernet), phone lines
  - add an Internet Protocol header to all packets

## **Benefits**

- Do not have to deploy new equipment, or modify existing software/protocols
  - probably have to deploy new software on top of existing software
  - e.g., adding IP on top of Ethernet does not require modifying Ethernet protocol or driver
  - allows bootstrapping
    - expensive to develop entirely new networking hardware/software
    - all networks after the telephone have begun as overlay networks

## **Benefits**

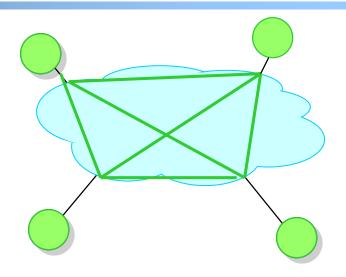
- Do not have to deploy at every node
  - not every node needs/wants overlay network service all the time
    - e.g., QoS guarantees for best-effort traffic
  - overlay network may be too heavyweight for some nodes
    - e.g., consumes too much memory, cycles, or bandwidth
  - overlay network may have unclear security properties
    - e.g., may be used for service denial attack
  - overlay network may not scale (not exactly a benefit)
    - e.g. may require n<sup>2</sup> state or communication

#### Costs

- Adds overhead
  - adds a layer in networking stack
    - additional packet headers, processing
  - sometimes, additional work is redundant
    - e.g., an IP packet contains both Ethernet (48 + 48 bits) and IP addresses (32 + 32 bits)
    - eliminate Ethernet addresses from Ethernet header and assume IP header(?)
- Adds complexity
  - layering does not eliminate complexity, it only manages it
  - more layers of functionality  $\rightarrow$  more possible unintended interaction between layers
  - e.g., corruption drops on wireless interpreted as congestion drops by TCP

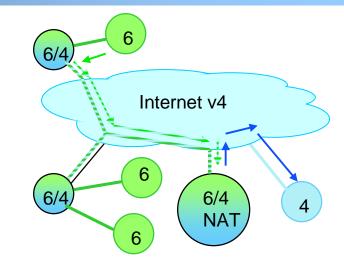
## Applications

- Mobility
  - MIPv4: pretends mobile host is in home network
- Routing
- Quality of Service
- Addressing
- Security
- Multicast


## **Applications: Routing**

- Flat space
  - every node has a route to every other node
  - n<sup>2</sup> state and communication, constant distance
- Hierarchy
  - every node routes through its parent
  - constant state and communication, log(n) distance
  - too much load on root
- Mesh (e.g., Content Addressable Network)
  - every node routes through 2d other nodes
  - O(d) state and communication, distance
- Chord

- $n^{1/d}$
- every node routes through O(log n) other nodes
- O(log n) state and communication, O(log n) distance


## **Applications: Quality of Service**

- Resilient Overlay Networks [Anderson et al 2001]
  - overlay nodes form a complete graph
  - nodes probe other nodes for lowest latency
  - knowledge of complete graph
     → lower latency routing than
     IP, faster recovery from faults
  - ongoing work on providing stronger QoS models using FEC



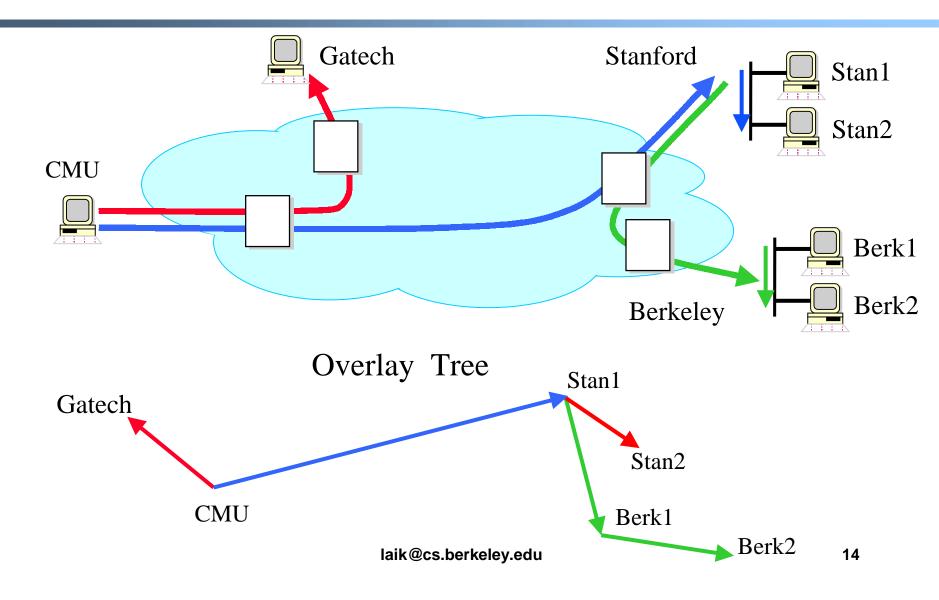
## **Applications: Addressing**

- provide more address space than underlying network
- 6bone
  - IPv6 on IPv4
  - requires NAT-like gateways for IPv6-only hosts to communicate with IPv4-only hosts
  - main current deployment of IPv6
- TRIAD, IP-NL
  - enhanced NAT
  - separate Internet into realms, each with its own IPv4 address space
  - use overlay network for interrealm routing



## **Applications: Security (VPN)**

- provide more security than underlying network
- privacy (e.g., IPSEC)
  - overlay encrypts traffic between nodes
  - only useful when end hosts cannot be secure
- anonymity (e.g., Zero Knowledge)
  - overlay prevents receiver from knowing which host is the sender, while still being able to reply
  - receiver cannot determine receiver exactly without compromising every overlay node along path
- service denial resistance (e.g., FreeNet)
  - overlay replicates content so that loss of a single node does not prevent content distribution


## **Problems with IP Multicast**

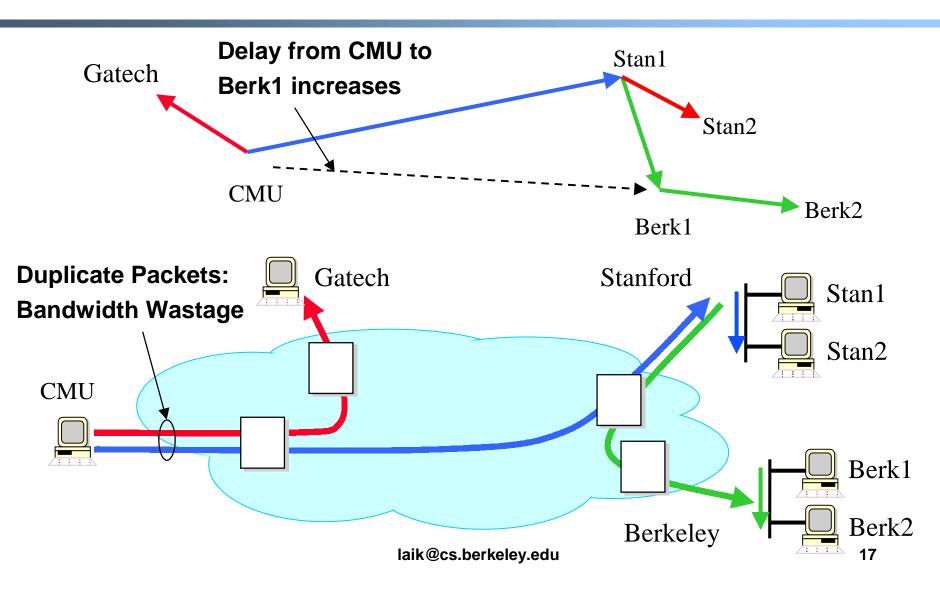
- Scales poorly with number of groups
  - A router must maintain state for every group that traverses it
- Supporting higher level functionality is difficult
  - IP Multicast: best-effort multi-point delivery service
  - Reliability and congestion control for IP Multicast complicated
    - scalable, end-to-end approach for heterogeneous receivers is very difficult
    - hop-by-hop approach requires more state and processing in routers
- Deployment is difficult and slow
  - ISP's reluctant to turn on IP Multicast

## **Overlay Multicast**

- Provide multicast functionality above the IP layer
   → overlay or application level multicast
- Challenge: do this efficiently
- Narada [Yang-hua et al, 2000]
  - Multi-source multicast
  - Involves only end hosts
  - Small group sizes <= hundreds of nodes
  - Typical application: chat

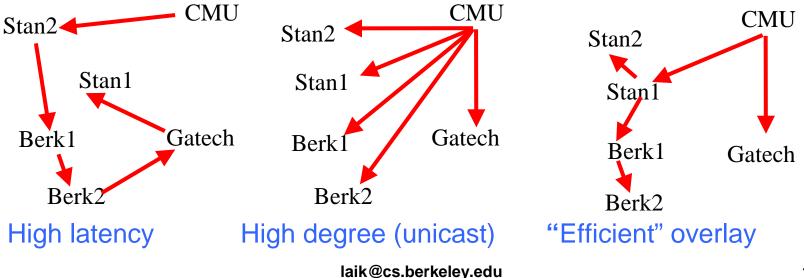
#### Narada: End System Multicast




### **Potential Benefits**

- Scalability
  - routers do not maintain per-group state
  - end systems do, but they participate in very few groups
- Easier to deploy
  - only requires adding software to end hosts
- Potentially simplifies support for higher level functionality
  - use hop-by-hop approach, but end hosts are routers
  - leverage computation and storage of end systems
  - e.g., packet buffering, transcoding of media streams, ACK aggregation
  - leverage solutions for unicast congestion control and reliability

#### **End System Multicast: Narada**


- A distributed protocol for constructing efficient overlay trees among end systems
- Caveat: assume applications with small and sparse groups
  - Around tens to hundreds of members

#### **Performance Concerns**

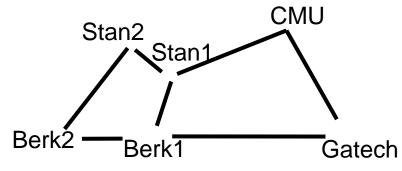


#### **Overlay Tree**

- The delay between the source and receivers is small
- Ideally,
  - The number of redundant packets on any physical link is low
- Heuristic:
  - Every member in the tree has a small degree
  - Degree chosen to reflect bandwidth of connection to Internet

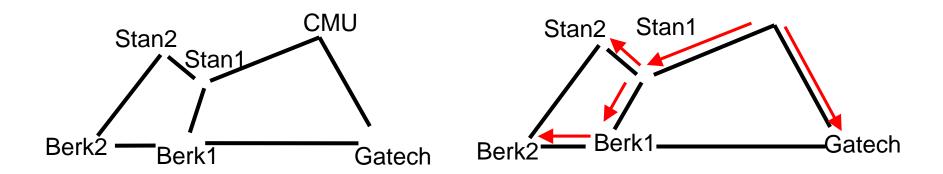


## **Overlay Construction Problems**


- Dynamic changes in group membership
  - Members may join and leave dynamically
  - Members may die
- Dynamic changes in network conditions and topology
  - Delay between members may vary over time due to congestion, routing changes
- Knowledge of network conditions is member specific
  - Each member must determine network conditions for itself

## Solution

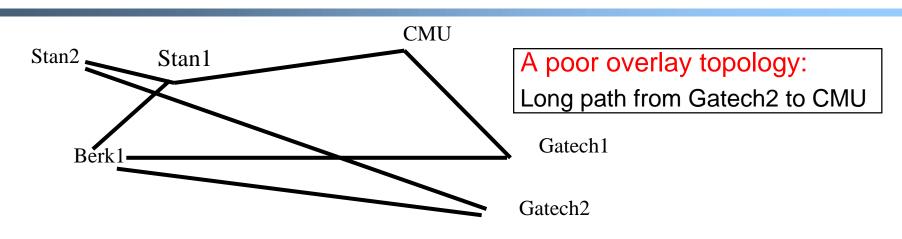
- Two step design
  - Build a mesh that includes all participating end-hosts
    - what they call a mesh is just a graph
    - members probe each other to learn network related information
    - overlay must self-improve as more information available
  - Build source routed distribution trees


## Mesh

- Advantages:
  - Offers a richer topology → robustness; don't need to worry to much about failures
  - Don't need to worry about cycles
- Desired properties
  - Members have low degrees
  - Shortest path delay between any pair of members along mesh is small



## **Overlay Trees**


- Source routed minimum spanning tree on mesh
- Desired properties
  - Members have low degree
  - Small delays from source to receivers



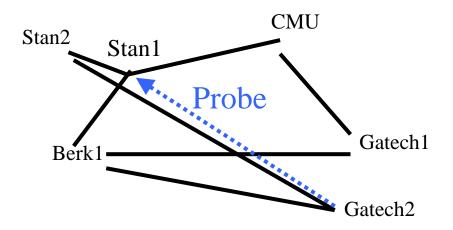
## Narada Components/Techniques

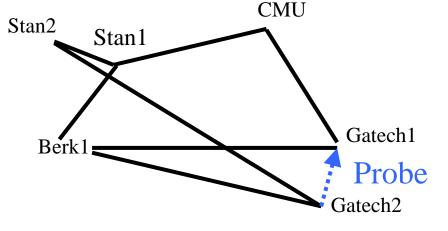
- Mesh Management:
  - Ensures mesh remains connected in face of membership changes
- Mesh Optimization:
  - Distributed heuristics for ensuring shortest path delay between members along the mesh is small
- Spanning tree construction:
  - Routing algorithms for constructing data-delivery trees
  - Distance vector routing, and reverse path forwarding

## **Optimizing Mesh Quality**



- Members periodically probe other members at random
- New link added if Utility\_Gain of adding link > Add\_Threshold
- Members periodically monitor existing links
- Existing link dropped if

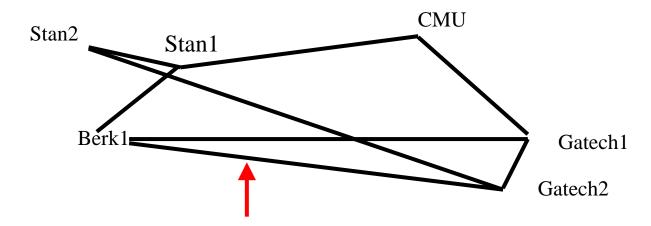

Cost of dropping link < Drop Threshold


## Definitions

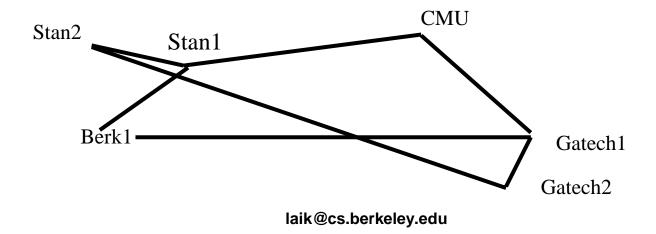
- Utility gain of adding a link based on
  - The number of members to which routing delay improves
  - How significant the improvement in delay to each member is
- Cost of dropping a link based on
  - The number of members to which routing delay increases, for either neighbor
- Add/Drop Thresholds are functions of:
  - Member's estimation of group size
  - Current and maximum degree of member in the mesh

## **Desirable properties of heuristics**

- Stability: A dropped link will not be immediately re-added
- Partition avoidance: A partition of the mesh is unlikely to be caused as a result of any single link being dropped







Delay improves to Stan1, CMU but marginally. Do not add link!

Delay improves to CMU, Gatech1 and significantly. Add link!

#### Example



Used by Berk1 to reach only Gatech2 and vice versa: Drop!!



## **Simulation Results**

- Simulations
  - Group of 128 members
  - Delay between 90% pairs < 4 times the unicast delay
  - No link caries more than 9 copies
- Experiments
  - Group of 13 members
  - Delay between 90% pairs < 1.5 times the unicast delay

## Summary

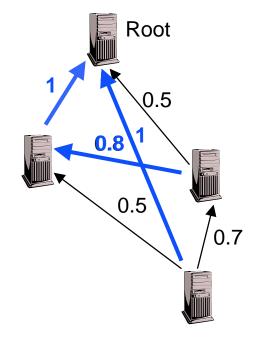
- End-system multicast (NARADA) : aimed to small-sized groups
  - Application example: chat
- Multi source multicast model
- No need for infrastructure
- Properties
  - low performance penalty compared to IP Multicast
  - potential to simplify support for higher layer functionality
  - allows for application-specific customizations

#### **Other Projects**

- Overcast [Jannotti et al, 2000]
  - Single source tree
  - Uses an infrastructure; end hosts are not part of multicast tree
  - Large groups ~ millions of nodes
  - Typical application: content distribution
- Scattercast (Chawathe et al, UC Berkeley)
  - Emphasis on infrastructural support and proxy-based multicast
  - Uses a mesh like Narada, but differences in protocol details
- Yoid (Paul Francis, FastForward/ACIRI)
  - Uses a shared tree among participating members
  - Distributed heuristics for managing and optimizing tree constructions

## Conclusion

- Narada demonstrates the flexibility of the application level multicast
  - I.e., the ability to optimize the multicast distribution to the application needs
- Issues
  - 4x unicast delay could be a problem for interactive applications
  - reliability and congestion control for heterogeneous receivers not demonstrated
  - sender access control solution not demonstrated
  - overhead of probes is low for one group, what about for n groups on same host?
  - is stress really an important metric?

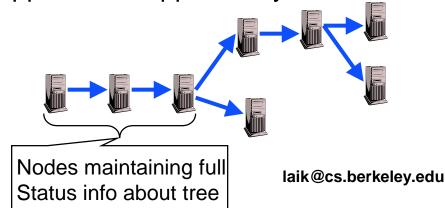

#### Overcast

- Designed for throughput intensive content delivery
  - Streaming, file distribution
- Single source multicast; like Express
- Solution: build a server based infrastructure
- Tree building objective: high throughput

## **Tree Building Protocol**

 Idea: Add a new node as far away from the route as possible without compromising the throughput!

```
Join (new, root) {
    current = root;
    B = bandwidth(root, new);
    do {
        B1 = 0;
        forall n in children(current) {
            B1 = bandwidth(n, new);
            if (B1 >= B) {
                current = n;
                break;
            }
            while (B1 >= B);
            new->parent = root;
        }
}
```




## Details

- A node periodically reevaluates its position by measuring bandwidth to its
  - Siblings
  - Parent
  - Grandparent
- The Up/Down protocol: track membership
  - Each node maintains info about all nodes in it sub-tree plus a log of changes
    - Memory cheap
  - Each node sends periodical alive messages to its parent
  - A node propagates info up-stream, when
    - Hears first time from a children
    - If it doesn't hear from a children for a present interval
    - Receives updates from children

## Details

- Problem: root  $\rightarrow$  single point of failure
- Solution: replicate root to have a backup source
- Problem: only root maintain complete info about the tree; need also protocol to replicate this info
- Elegant solution: maintain a tree in which first levels have degree one
  - Advantage: all nodes at these levels maintain full info about the tree
  - Disadvantage: may increase delay, but this is not important for application supported by Overcast



#### **Some Results**

- Network load < twice the load of IP multicast (600 node network)</li>
- Convergence: a 600 node network converges in ~ 45 rounds

## Summary

- Overcast: aimed to large groups and high throughput applications
  - Examples: video streaming, software download
- Single source multicast model
- Deployed as an infrastructure
- Properties
  - Low performance penalty compared to IP multicast
  - Robust & customizable (e.g., use local disks for aggressive caching)