
CS 268:
Overlay Networks:

Introduction and Multicast
Kevin Lai

April 29, 2001

laik@cs.berkeley.edu 2

Definition

! Network
- defines addressing, routing, and

service model for communication
between hosts

! Overlay network
- A network built on top of one or

more existing networks
- adds an additional layer of

indirection/virtualization
- changes properties in one or

more areas of underlying network
! Alternative

- change an existing network layer

laik@cs.berkeley.edu 3

A Historical Example

! Internet is an overlay network
- goal: connect local area networks
- built on local area networks (e.g., Ethernet), phone lines
- add an Internet Protocol header to all packets

laik@cs.berkeley.edu 4

Benefits

! Do not have to deploy new equipment, or modify
existing software/protocols

- probably have to deploy new software on top of existing
software

- e.g., adding IP on top of Ethernet does not require
modifying Ethernet protocol or driver

- allows bootstrapping
• expensive to develop entirely new networking

hardware/software
• all networks after the telephone have begun as

overlay networks

laik@cs.berkeley.edu 5

Benefits

! Do not have to deploy at every node
- not every node needs/wants overlay network service all

the time
• e.g., QoS guarantees for best-effort traffic

- overlay network may be too heavyweight for some
nodes

• e.g., consumes too much memory, cycles, or
bandwidth

- overlay network may have unclear security properties
• e.g., may be used for service denial attack

- overlay network may not scale (not exactly a benefit)
• e.g. may require n2 state or communication

laik@cs.berkeley.edu 6

Costs

! Adds overhead
- adds a layer in networking stack

• additional packet headers, processing
- sometimes, additional work is redundant

• e.g., an IP packet contains both Ethernet (48 + 48 bits)
and IP addresses (32 + 32 bits)

• eliminate Ethernet addresses from Ethernet header and
assume IP header(?)

! Adds complexity
- layering does not eliminate complexity, it only manages it
- more layers of functionality → more possible unintended

interaction between layers
- e.g., corruption drops on wireless interpreted as congestion

drops by TCP

laik@cs.berkeley.edu 7

Applications

! Mobility
- MIPv4: pretends mobile host is in home network

! Routing
! Quality of Service
! Addressing
! Security
! Multicast

laik@cs.berkeley.edu 8

Applications: Routing

! Flat space
- every node has a route to every other node
- n2 state and communication, constant distance

! Hierarchy
- every node routes through its parent
- constant state and communication, log(n) distance
- too much load on root

! Mesh (e.g., Content Addressable Network)
- every node routes through 2d other nodes
- O(d) state and communication, distance

! Chord
- every node routes through O(log n) other nodes
- O(log n) state and communication, O(log n) distance

dn /1

laik@cs.berkeley.edu 9

Applications: Quality of Service

! Resilient Overlay Networks
[Anderson et al 2001]

- overlay nodes form a complete
graph

- nodes probe other nodes for
lowest latency

- knowledge of complete graph
→ lower latency routing than
IP, faster recovery from faults

- ongoing work on providing
stronger QoS models using
FEC

laik@cs.berkeley.edu 10

Applications: Addressing

! provide more address space than
underlying network

! 6bone
- IPv6 on IPv4
- requires NAT-like gateways for

IPv6-only hosts to communicate
with IPv4-only hosts

- main current deployment of IPv6
! TRIAD, IP-NL

- enhanced NAT
- separate Internet into realms,

each with its own IPv4 address
space

- use overlay network for inter-
realm routing

6/4

Internet v4

6/4 4

6

6

6

6/4
NAT

laik@cs.berkeley.edu 11

Applications: Security (VPN)

! provide more security than underlying network
! privacy (e.g., IPSEC)

- overlay encrypts traffic between nodes
- only useful when end hosts cannot be secure

! anonymity (e.g., Zero Knowledge)
- overlay prevents receiver from knowing which host is

the sender, while still being able to reply
- receiver cannot determine receiver exactly without

compromising every overlay node along path
! service denial resistance (e.g., FreeNet)

- overlay replicates content so that loss of a single node
does not prevent content distribution

laik@cs.berkeley.edu 12

Problems with IP Multicast

! Scales poorly with number of groups
- A router must maintain state for every group that

traverses it
! Supporting higher level functionality is difficult

- IP Multicast: best-effort multi-point delivery service
- Reliability and congestion control for IP Multicast

complicated
• scalable, end-to-end approach for heterogeneous

receivers is very difficult
• hop-by-hop approach requires more state and

processing in routers
! Deployment is difficult and slow

- ISP’s reluctant to turn on IP Multicast

laik@cs.berkeley.edu 13

Overlay Multicast

! Provide multicast functionality above the IP layer
" overlay or application level multicast

! Challenge: do this efficiently
! Narada [Yang-hua et al, 2000]

- Multi-source multicast
- Involves only end hosts
- Small group sizes <= hundreds of nodes
- Typical application: chat

laik@cs.berkeley.edu 14

Narada: End System Multicast

Stanford

CMU

Stan1

Stan2

Berk2

Overlay Tree
Gatech

Berk1

Berkeley

Gatech Stan1

Stan2
CMU

Berk1

Berk2

laik@cs.berkeley.edu 15

Potential Benefits

! Scalability
- routers do not maintain per-group state
- end systems do, but they participate in very few groups

! Easier to deploy
- only requires adding software to end hosts

! Potentially simplifies support for higher level functionality
- use hop-by-hop approach, but end hosts are routers
- leverage computation and storage of end systems
- e.g., packet buffering, transcoding of media streams, ACK

aggregation
- leverage solutions for unicast congestion control and reliability

laik@cs.berkeley.edu 16

End System Multicast: Narada

! A distributed protocol for constructing efficient
overlay trees among end systems

! Caveat: assume applications with small and
sparse groups

- Around tens to hundreds of members

laik@cs.berkeley.edu 17

Performance Concerns

Duplicate Packets:
Bandwidth Wastage

CMU

Stan1

Stan2

Berk2

Gatech

Berk1

Delay from CMU to
Berk1 increases

Stanford

Berkeley

Gatech Stan1

Stan2
CMU

Berk1

Berk2

laik@cs.berkeley.edu 18

Overlay Tree
! The delay between the source and receivers is small
! Ideally,

- The number of redundant packets on any physical link is low
! Heuristic:

- Every member in the tree has a small degree
- Degree chosen to reflect bandwidth of connection to Internet

Gatech

“Efficient” overlay

CMU

Berk2

Stan1

Stan2

Berk1Berk1

High degree (unicast)
Berk2

Gatech

Stan2
CMU

Stan1

Stan2

High latency

CMU

Berk2

Gatech

Stan1

Berk1

laik@cs.berkeley.edu 19

Overlay Construction Problems

! Dynamic changes in group membership
- Members may join and leave dynamically
- Members may die

! Dynamic changes in network conditions and
topology

- Delay between members may vary over time due to
congestion, routing changes

! Knowledge of network conditions is member
specific

- Each member must determine network conditions for
itself

laik@cs.berkeley.edu 20

Solution

! Two step design
- Build a mesh that includes all participating end-hosts

• what they call a mesh is just a graph
• members probe each other to learn network related

information
• overlay must self-improve as more information

available
- Build source routed distribution trees

laik@cs.berkeley.edu 21

Mesh

! Advantages:
- Offers a richer topology " robustness; don’t need to

worry to much about failures
- Don’t need to worry about cycles

! Desired properties
- Members have low degrees
- Shortest path delay between any pair of members along

mesh is small

Berk2 Berk1

CMU

Gatech

Stan1
Stan2

laik@cs.berkeley.edu 22

Overlay Trees

! Source routed minimum spanning tree on mesh
! Desired properties

- Members have low degree
- Small delays from source to receivers

Berk2 GatechBerk1

Stan1Stan2

Berk2 Berk1

CMU

Gatech

Stan1
Stan2

laik@cs.berkeley.edu 23

Narada Components/Techniques

! Mesh Management:
- Ensures mesh remains connected in face of membership changes

! Mesh Optimization:
- Distributed heuristics for ensuring shortest path delay between

members along the mesh is small
! Spanning tree construction:

- Routing algorithms for constructing data-delivery trees
- Distance vector routing, and reverse path forwarding

laik@cs.berkeley.edu 24

Optimizing Mesh Quality

! Members periodically probe other members at random
! New link added if

Utility_Gain of adding link > Add_Threshold
! Members periodically monitor existing links
! Existing link dropped if

Cost of dropping link < Drop Threshold

Berk1

Stan2
CMU

Gatech1

Stan1

Gatech2

A poor overlay topology:
Long path from Gatech2 to CMU

laik@cs.berkeley.edu 25

Definitions

! Utility gain of adding a link based on
- The number of members to which routing delay improves
- How significant the improvement in delay to each member is

! Cost of dropping a link based on
- The number of members to which routing delay increases, for either

neighbor
! Add/Drop Thresholds are functions of:

- Member’s estimation of group size
- Current and maximum degree of member in the mesh

laik@cs.berkeley.edu 26

Desirable properties of heuristics

! Stability: A dropped link will not be immediately re-added
! Partition avoidance: A partition of the mesh is unlikely to be

caused as a result of any single link being dropped

Delay improves to Stan1, CMU
but marginally.
Do not add link!

Delay improves to CMU, Gatech1
and significantly.
Add link!

Berk1

Stan2
CMU

Gatech1

Stan1

Gatech2

Probe

Berk1

Stan2
CMU

Gatech1

Stan1

Gatech2
Probe

laik@cs.berkeley.edu 27

Example

Used by Berk1 to reach only Gatech2 and vice versa: Drop!!

Gatech1Berk1

Stan2 CMU
Stan1

Gatech2

Gatech1Berk1

Stan2 CMU
Stan1

Gatech2

laik@cs.berkeley.edu 28

Simulation Results

! Simulations
- Group of 128 members
- Delay between 90% pairs < 4 times the unicast delay
- No link caries more than 9 copies

! Experiments
- Group of 13 members
- Delay between 90% pairs < 1.5 times the unicast delay

laik@cs.berkeley.edu 29

Summary

! End-system multicast (NARADA) : aimed to
small-sized groups

- Application example: chat
! Multi source multicast model
! No need for infrastructure
! Properties

- low performance penalty compared to IP Multicast
- potential to simplify support for higher layer functionality
- allows for application-specific customizations

laik@cs.berkeley.edu 30

Other Projects

! Overcast [Jannotti et al, 2000]
- Single source tree
- Uses an infrastructure; end hosts are not part of multicast tree
- Large groups ~ millions of nodes
- Typical application: content distribution

! Scattercast (Chawathe et al, UC Berkeley)
- Emphasis on infrastructural support and proxy-based

multicast
- Uses a mesh like Narada, but differences in protocol details

! Yoid (Paul Francis, FastForward/ACIRI)
- Uses a shared tree among participating members
- Distributed heuristics for managing and optimizing tree

constructions

laik@cs.berkeley.edu 31

Conclusion

! Narada demonstrates the flexibility of the
application level multicast

- I.e., the ability to optimize the multicast distribution to
the application needs

! Issues
- 4x unicast delay could be a problem for interactive

applications
- reliability and congestion control for heterogeneous

receivers not demonstrated
- sender access control solution not demonstrated
- overhead of probes is low for one group, what about for

n groups on same host?
- is stress really an important metric?

laik@cs.berkeley.edu 32

Overcast

! Designed for throughput intensive content
delivery

- Streaming, file distribution
! Single source multicast; like Express
! Solution: build a server based infrastructure
! Tree building objective: high throughput

laik@cs.berkeley.edu 33

Tree Building Protocol

! Idea: Add a new node as far away from the route as
possible without compromising the throughput!

1
0.5

0.80.8 1

0.5
0.7

1

RootJoin (new, root) {
current = root;
B = bandwidth(root, new);
do {

B1 = 0;
forall n in children(current) {

B1 = bandwidth(n, new);
if (B1 >= B) {

current = n;
break;

}
} while (B1 >= B);
new->parent = root;

}

laik@cs.berkeley.edu 34

Details

! A node periodically reevaluates its position by
measuring bandwidth to its

- Siblings
- Parent
- Grandparent

! The Up/Down protocol: track membership
- Each node maintains info about all nodes in it sub-tree plus

a log of changes
• Memory cheap

- Each node sends periodical alive messages to its parent
- A node propagates info up-stream, when

• Hears first time from a children
• If it doesn’t hear from a children for a present interval
• Receives updates from children

laik@cs.berkeley.edu 35

Details
! Problem: root " single point of failure
! Solution: replicate root to have a backup source
! Problem: only root maintain complete info about the tree;

need also protocol to replicate this info
! Elegant solution: maintain a tree in which first levels have

degree one
- Advantage: all nodes at these levels maintain full info about the tree
- Disadvantage: may increase delay, but this is not important for

application supported by Overcast

Nodes maintaining full
Status info about tree

laik@cs.berkeley.edu 36

Some Results

! Network load < twice the load of IP multicast (600
node network)

! Convergence: a 600 node network converges in
~ 45 rounds

laik@cs.berkeley.edu 37

Summary

! Overcast: aimed to large groups and high
throughput applications

- Examples: video streaming, software download
! Single source multicast model
! Deployed as an infrastructure
! Properties

- Low performance penalty compared to IP multicast
- Robust & customizable (e.g., use local disks for

aggressive caching)

