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Definition

! Network
- defines addressing, routing, and 

service model for communication 
between hosts

! Overlay network
- A network built on top of one or 

more existing networks
- adds an additional layer of 

indirection/virtualization
- changes properties in one or 

more areas of underlying network
! Alternative

- change an existing network layer
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A Historical Example

! Internet is an overlay network
- goal: connect local area networks
- built on local area networks (e.g., Ethernet), phone lines
- add an Internet Protocol header to all packets
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Benefits

! Do not have to deploy new equipment, or modify 
existing software/protocols

- probably have to deploy new software on top of existing 
software

- e.g., adding IP on top of Ethernet does not require 
modifying Ethernet protocol or driver

- allows bootstrapping
• expensive to develop entirely new networking 

hardware/software
• all networks after the telephone have begun as 

overlay networks
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Benefits

! Do not have to deploy at every node
- not every node needs/wants overlay network service all 

the time
• e.g., QoS guarantees for best-effort traffic

- overlay network may be too heavyweight for some 
nodes

• e.g., consumes too much memory, cycles, or 
bandwidth

- overlay network may have unclear security properties
• e.g., may be used for service denial attack

- overlay network may not scale (not exactly a benefit)
• e.g. may require n2 state or communication 
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Costs

! Adds overhead
- adds a layer in networking stack

• additional packet headers, processing
- sometimes, additional work is redundant

• e.g., an IP packet contains both Ethernet (48 + 48 bits) 
and IP addresses (32 + 32 bits)

• eliminate Ethernet addresses from Ethernet header and 
assume IP header(?)

! Adds complexity
- layering does not eliminate complexity, it only manages it
- more layers of functionality → more possible unintended 

interaction between layers
- e.g., corruption drops on wireless interpreted as congestion 

drops by TCP
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Applications

! Mobility
- MIPv4: pretends mobile host is in home network

! Routing
! Quality of Service
! Addressing
! Security
! Multicast
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Applications: Routing

! Flat space
- every node has a route to every other node
- n2 state and communication, constant distance

! Hierarchy
- every node routes through its parent
- constant state and communication, log(n) distance
- too much load on root

! Mesh (e.g., Content Addressable Network)
- every node routes through 2d other nodes
- O(d) state and communication,      distance

! Chord
- every node routes through O(log n) other nodes
- O(log n) state and communication, O(log n) distance

dn /1
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Applications: Quality of Service

! Resilient Overlay Networks 
[Anderson et al 2001]

- overlay nodes form a complete 
graph

- nodes probe other nodes for 
lowest latency

- knowledge of complete graph 
→ lower latency routing than 
IP, faster recovery from faults

- ongoing work on providing 
stronger QoS models using 
FEC
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Applications: Addressing

! provide more address space than 
underlying network

! 6bone
- IPv6 on IPv4
- requires NAT-like gateways for 

IPv6-only hosts to communicate 
with IPv4-only hosts

- main current deployment of IPv6
! TRIAD, IP-NL

- enhanced NAT
- separate Internet into realms, 

each with its own IPv4 address 
space

- use overlay network for inter-
realm routing

6/4

Internet v4

6/4 4

6

6

6

6/4
NAT



laik@cs.berkeley.edu 11

Applications: Security (VPN)

! provide more security than underlying network
! privacy (e.g., IPSEC)

- overlay encrypts traffic between nodes
- only useful when end hosts cannot be secure

! anonymity (e.g., Zero Knowledge)
- overlay prevents receiver from knowing which host is 

the sender, while still being able to reply
- receiver cannot determine receiver exactly without 

compromising every overlay node along path
! service denial resistance (e.g., FreeNet)

- overlay replicates content so that loss of a single node 
does not prevent content distribution
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Problems with IP Multicast

! Scales poorly with number of groups
- A router must maintain state for every group that 

traverses it
! Supporting higher level functionality is difficult

- IP Multicast: best-effort multi-point delivery service
- Reliability and congestion control for IP Multicast 

complicated
• scalable, end-to-end approach for heterogeneous 

receivers is very difficult
• hop-by-hop approach requires more state and 

processing in routers
! Deployment is difficult and slow

- ISP’s reluctant to turn on IP Multicast
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Overlay Multicast

! Provide multicast functionality above the IP layer 
" overlay or application level multicast

! Challenge: do this efficiently
! Narada [Yang-hua et al, 2000]

- Multi-source multicast
- Involves only end hosts
- Small group sizes <= hundreds of nodes
- Typical application: chat
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Narada: End System Multicast
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Potential Benefits

! Scalability
- routers do not maintain per-group state
- end systems do, but they participate in very few groups

! Easier to deploy
- only requires adding software to end hosts

! Potentially simplifies support for higher level functionality
- use hop-by-hop approach, but end hosts are routers
- leverage computation and storage of end systems
- e.g., packet buffering, transcoding of media streams, ACK 

aggregation
- leverage solutions for unicast congestion control and reliability
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End System Multicast: Narada

! A distributed protocol for constructing efficient 
overlay trees among end systems

! Caveat: assume applications with small and 
sparse groups  

- Around tens to hundreds of members
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Performance Concerns

Duplicate Packets:
Bandwidth Wastage
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Overlay Tree
! The delay between the source and receivers is small
! Ideally,

- The number of redundant packets on any physical link is low
! Heuristic: 

- Every member in the tree has a small degree 
- Degree chosen to reflect bandwidth of connection to Internet
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Overlay Construction Problems

! Dynamic changes in group membership  
- Members may join and leave dynamically
- Members may die

! Dynamic changes in network conditions and 
topology

- Delay between members may vary over time due to 
congestion, routing changes

! Knowledge of network conditions is member 
specific

- Each member must determine network conditions for 
itself
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Solution

! Two step design
- Build a mesh that includes all participating end-hosts

• what they call a mesh is just a graph
• members probe each other to learn network related 

information 
• overlay must self-improve as more information 

available
- Build source routed distribution trees
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Mesh

! Advantages:
- Offers a richer topology " robustness; don’t need to 

worry to much about failures
- Don’t need to worry about cycles

! Desired properties 
- Members have low degrees
- Shortest path delay between any pair of members along 

mesh is small

Berk2 Berk1

CMU

Gatech

Stan1
Stan2
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Overlay Trees

! Source routed minimum spanning tree on mesh
! Desired properties

- Members have low degree
- Small delays from source to receivers

Berk2 GatechBerk1

Stan1Stan2

Berk2 Berk1

CMU

Gatech
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Narada Components/Techniques

! Mesh Management:
- Ensures mesh remains connected in face of membership changes

! Mesh Optimization:
- Distributed heuristics for ensuring shortest path delay between 

members along the mesh is small
! Spanning tree construction:

- Routing algorithms for constructing data-delivery trees 
- Distance vector routing, and reverse path forwarding



laik@cs.berkeley.edu 24

Optimizing Mesh Quality

! Members periodically probe other members at random 
! New link added if

Utility_Gain of adding link > Add_Threshold
! Members  periodically monitor existing links
! Existing link dropped if

Cost of dropping link < Drop Threshold

Berk1

Stan2
CMU

Gatech1

Stan1

Gatech2

A poor overlay topology:
Long path from Gatech2 to CMU
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Definitions 

! Utility gain of adding a link based on
- The number of members to which routing delay improves
- How significant the improvement in delay to each member is

! Cost of dropping a link based on
- The number of members to which routing delay increases, for either 

neighbor
! Add/Drop Thresholds are functions of:

- Member’s estimation of group size 
- Current and maximum degree of member in the mesh
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Desirable properties of heuristics

! Stability: A dropped link will not be immediately re-added
! Partition avoidance: A partition of the mesh is unlikely to  be 

caused as a result of any single link being dropped

Delay improves to Stan1, CMU 
but marginally.
Do not add link!

Delay improves to CMU, Gatech1 
and significantly.  
Add link!
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Example

Used by Berk1 to reach only Gatech2 and vice versa: Drop!!

Gatech1Berk1

Stan2 CMU
Stan1

Gatech2

Gatech1Berk1

Stan2 CMU
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Gatech2
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Simulation Results

! Simulations
- Group of 128 members
- Delay between 90% pairs < 4 times the unicast delay
- No link caries more than 9 copies

! Experiments
- Group of 13 members
- Delay between 90% pairs < 1.5 times the unicast delay
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Summary 

! End-system multicast (NARADA) : aimed to 
small-sized groups

- Application example: chat
! Multi source multicast model
! No need for infrastructure
! Properties

- low performance penalty compared to IP Multicast
- potential to simplify support for higher layer functionality
- allows for application-specific customizations
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Other Projects

! Overcast [Jannotti et al, 2000]
- Single source tree
- Uses an infrastructure; end hosts are not part of multicast tree
- Large groups ~ millions of nodes
- Typical application: content distribution 

! Scattercast (Chawathe et al, UC Berkeley)
- Emphasis on infrastructural support and proxy-based 

multicast
- Uses a mesh like Narada, but differences in protocol details

! Yoid (Paul Francis, FastForward/ACIRI)
- Uses a shared tree among participating members
- Distributed heuristics for managing and optimizing tree 

constructions
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Conclusion

! Narada demonstrates the flexibility of the 
application level multicast

- I.e., the ability to optimize the multicast distribution to 
the application needs

! Issues
- 4x unicast delay could be a problem for interactive 

applications
- reliability and congestion control for heterogeneous 

receivers not demonstrated
- sender access control solution not demonstrated
- overhead of probes is low for one group, what about for 

n groups on same host?
- is stress really an important metric?
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Overcast

! Designed for throughput intensive content 
delivery

- Streaming, file distribution
! Single source multicast; like Express
! Solution: build a server based infrastructure
! Tree building objective: high throughput



laik@cs.berkeley.edu 33

Tree Building Protocol

! Idea: Add a new node as far away from the route as 
possible without compromising the throughput!  

1
0.5

0.80.8 1

0.5
0.7

1

RootJoin (new, root) {
current = root;
B = bandwidth(root, new);
do {

B1 = 0;
forall n in children(current) {

B1 = bandwidth(n, new); 
if (B1 >= B) {

current = n;
break;

}
} while (B1 >= B);
new->parent = root;

}
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Details

! A node periodically reevaluates its position by 
measuring bandwidth to its

- Siblings
- Parent
- Grandparent

! The Up/Down protocol: track membership
- Each node maintains info about all nodes in it sub-tree plus 

a log of changes
• Memory cheap

- Each node sends periodical alive messages to its parent
- A node propagates info up-stream, when

• Hears first time from a children
• If it doesn’t hear from a children for a present interval
• Receives updates from children



laik@cs.berkeley.edu 35

Details
! Problem: root " single point of failure
! Solution: replicate root to have a backup source
! Problem: only root maintain complete info about the tree; 

need also protocol to replicate this info
! Elegant solution: maintain a tree in which first levels have 

degree one
- Advantage: all nodes at these levels maintain full info about the tree
- Disadvantage: may increase delay, but this is not important for

application supported by Overcast

Nodes maintaining full
Status info about tree
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Some Results

! Network load < twice the load of IP multicast (600 
node network)

! Convergence: a 600 node network converges in 
~ 45 rounds
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Summary

! Overcast: aimed to large groups and high 
throughput applications

- Examples: video streaming, software download
! Single source multicast model
! Deployed as an infrastructure
! Properties

- Low performance penalty compared to IP multicast
- Robust & customizable (e.g., use local disks for 

aggressive caching) 


