
CS 268:
Overlay Networks:

Distributed Hash Tables
Kevin Lai

May 1, 2001

2

From last time

! Overlay Benefits
- Do not have to modify existing hardware and software
- Do not have to deploy at every node

! Another Overlay Benefit
- Free to ignore physical network topology

• avoids complexity of worrying about physical
topology

• pitfall: usually results in poor latency

3

Motivation

! Many distributed applications need to map from an
identifier to a host

- overlay network
• to route packets to hosts
• e.g., application layer multicast, overlay QoS

- persistent storage
• to locate a data item
• distributed file system, name system, distributed

database, content distribution
• e.g., Napster, Gnutella, FreeNet, DNS, Akamai

- distributed computation
• to exchange results
• e.g., @Home

4

Existing Solutions

! Flat space routing
- every node has a route to every other node
- n2 state and communication, constant distance
- requires too much state and communication
- e.g., Narada, RON cannot scale beyond ~100 nodes

! Hierarchical routing
- every node routes through its parent
- constant state and communication, log(n) distance
- puts too much load on root
- root is single point of failure
- e.g., @Home is 1 level hierarchy, server is overloaded
- e.g., Napster is 1 level hierarchy, vulnerable to legal action

against root

5

Distributed Hash Tables

! Problem:
- Given an id, map to a host

! Challenges
- Scalability: hundreds of thousands or millions of machines
- Instability

• changes in routes, congestion, availability of machines
- Heterogeneity

• latency: 1ms to 1000ms
• bandwidth: 32Kb/s to 100Mb/s
• nodes stay in system from 10s to a year

- Trust
• selfish users
• malicious users

6

Content Addressable Network
(CAN)

! Associate to each node and item a unique id in
an d-dimensional Cartesian space

! Goals
- Scales to hundreds of thousands of nodes
- Handles rapid arrival and failure of nodes

! Properties
- Routing table size O(d)
- Guarantees that a file is found in at most d*n1/d steps,

where n is the total number of nodes

7

CAN Example: Two Dimensional
Space

! Space divided between nodes
! All nodes cover the entire space
! Each node covers either a square or a

rectangular area of ratios 1:2 or 2:1
! Example:

- Node n1:(1, 2) first node that joins "
cover the entire space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1

8

CAN Example: Two Dimensional
Space

! Node n2:(4, 2) joins " space is
divided between n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

9

CAN Example: Two Dimensional
Space

! Node n2:(4, 2) joins " space is
divided between n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3

10

CAN Example: Two Dimensional
Space

! Nodes n4:(5, 5) and n5:(6,6) join

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

11

CAN Example: Two Dimensional
Space

! Nodes: n1:(1, 2); n2:(4,2); n3:(3, 5);
n4:(5,5);n5:(6,6)

! Items: f1:(2,3); f2:(5,1); f3:(2,1);
f4:(7,5);

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

12

CAN Example: Two Dimensional
Space

! Each item is stored by the node
who owns its mapping in the
space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

13

CAN: Query Example

! Each node knows its neighbors
in the d-space

! Forward query to the neighbor
that is closest to the query id

! Example: assume n1 queries f4
! Can route around some failures

- some failures require local flooding

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

14

Node Failure Recovery

! Simple failures
- know your neighbor’s neighbors
- when a node fails, one of its neighbors takes over its

zone

! More complex failure modes
- simultaneous failure of multiple adjacent nodes
- scoped flooding to discover neighbors
- hopefully, a rare event

15

Chord

! Associate to each node and item a unique id in
an uni-dimensional space

! Goals
- Scales to hundreds of thousands of nodes
- Handles rapid arrival and failure of nodes

! Properties
- Routing table size O(log(N)) , where N is the total

number of nodes
- Guarantees that a file is found in O(log(N)) steps

16

Data Structure

! Assume identifier space is 0..2m

! Each node maintains
- Finger table

• Entry i in the finger table of n is the first node that
succeeds or equals n + 2i

- Predecessor node
! An item identified by id is stored on the succesor

node of id

17

Chord Example

! Assume an identifier
space 0..8

! Node n1:(1) joins"all
entries in its finger
table are initialized to
itself

0
1

2

3
4

5

6

7
i id+2i succ
0 2 1
1 3 1
2 5 1

Succ. Table

18

Chord Example

! Node n2:(3) joins

0
1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 1
2 5 1

Succ. Table

i id+2i succ
0 3 1
1 4 1
2 6 1

Succ. Table

19

Chord Example

! Nodes n3:(0), n4:(6) join

0
1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

20

Chord Examples

! Nodes: n1:(1), n2(3),
n3(0), n4(6)

! Items: f1:(7), f2:(2)

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table
7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

21

Query
! Upon receiving a query

for item id, a node
! Check whether stores

the item locally
! If not, forwards the query

to the largest node in its
successor table that
does not exceed id

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table
7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

query(7)

22

CAN/Chord Optimizations

! Weight neighbor nodes by RTT
- when routing, choose neighbor who is closer to

destination with lowest RTT from me
- reduces path latency

! Multiple physical nodes per virtual node
- reduces path length (fewer virtual nodes)
- reduces path latency (can choose physical node from

virtual node with lowest RTT)
- improved fault tolerance (only one node per zone needs

to survive to allow routing through the zone)
! Several others

23

Discussion

! Queries
- Iteratively or recursively

! Heterogeneity?
! Trust?

24

Conclusions

! Distributed Hash Tables are a key component of
scalable and robust overlay networks

! CAN: O(d) state, O(d*n1/d) distance
! Chord: O(log n) state, O(log n) distance
! Both achieve stretch < 2
! Simplicity is key
! Services built on top of distributed hash tables

- p2p file storage, i3 (chord)
- multicast (CAN)
- persistent storage (OceanStore using Tapestry)

25

I3 Motivation

! Today’s Internet is built around a point-to-point
communication abstraction:

- Send packet “p” from host “A” to host “B”
! This abstraction allows Internet to be highly

scalable and efficient, but…
! … not appropriate for applications that require:

- Multicast
- Anycast
- Mobility
- …

26

Why?

! Point-to-point communication abstraction
implicitly assumes that there is one sender and
one receiver, and that they are placed at fixed
and well-known locations

- E.g., a host identified by the IP address 128.32.xxx.xxx
is most likely located in the Berkeley area

27

Existing Solutions

! Change IP to support new services, e.g.,
- mobile IP
- IP multicast

! Disadvantages:
- Difficult to implement while maintaining Internet’s

scalability
- Even if they are implemented, ISPs might not have

incentive to enable them

28

Existing Solutions (cont’d)

! Implement the required functionality at the application level,
e.g.,

- Application level multicast (Narada, Overcast, Scattercast,…)
- Application level mobility via DNS

! Disadvantages:
- Efficient routing is hard
- Each application implements the same functionality over and

over again
- No synergy in deployment

• might have n nodes deploy overlay A, and m nodes
deploy overlay B instead of n+m nodes deploying i3 for
both A and B

- May have redundant overhead
• e.g., probing for closest nodes

29

Key Observation

! All previous solutions use a simple but powerful
technique: indirection

- Assume a logical or physical indirection point
interposed between sender(s) and receiver(s)

! Examples:
- IP multicast assumes a logical indirection point: the IP

multicast address
- Mobile IP assumes a physical indirection point: the

home agent

30

Solution

! Add an efficient indirection layer (IL) on top of IP
- Transparent for legacy applications

! Use an overlay network to implement IL
- Incrementally deployable; don’t need to change IP

IP

TCP/UDP

Application

IL

31

Internet Indirection Infrastructure
(i3)

! Change communication abstraction: instead of point-
to-point, exchange data by name

- Each packet is associated an identifier ID
- To receive a packet with identifier ID, receiver R maintains a

trigger (ID, R) into the overlay network

Sender Receiver (R)

ID R

trigger

send(ID, data)
send(R, data)

32

Service Model

! Best-effort service model (like IP)
! Triggers are periodically refreshed by end-hosts
! Reliability, congestion control, and flow-control

implemented at end-hosts

33

The Promise

! Provide support for
- Mobility
- Multicast
- Anycast
- Composable services

34

Mobility

! Host just needs to update its trigger as moves
from one subnet to another

- Robust
- Support simultaneous mobility
- Can eliminate the “triangle routing problem”
- Location privacy

Sender
Receiver

(R1)ID R1

send(ID,data) send(R1, data)

35

Mobility

! Host just needs to update its trigger as moves
from one subnet to another

- Robust
- Support simultaneous mobility
- Can eliminate the “triangle routing problem”
- Location privacy

Sender

Receiver
(R2)

ID R2

send(ID,data)

send(R2, data)

36

Multicast

! Unifies multicast and unicast abstraction
- Multicast: receivers insert triggers with the same

identifier
! An application can dynamically switch between

multicast and unicast

Sender Receiver (R1)ID R1

send(ID,data) send(R1, data)

Receiver (R2)

ID R2

send(R2, data)

37

Discussion: I3 vs. IP Multicast

! I3 doesn’t provide direct support for scalable
multicast

- Simple to implement
! Give end-hosts the ability to control “routing”

- End-hosts can build their own multicast tree if needed!

R2

R1

R4
R3

g
R2

g
R1

g
x

x
R4

x
R3

(g, data)

38

Implementation

! I3 is implemented on top of Chord
- But can easily use CAN, Pastry, or Tapestry

! Each trigger (id, …) is stored on the server
responsible for id

! Use Chord routing to find best matching trigger
for a packet (id, data)

- Path length O(log N), where N is the number of nodes
in the system

39

Achieving Efficient Routing

! Source caches the I3 server that stores the
matching trigger

- Only first packet(s) of a flow experience O(log N) path
length

- Subsequent packets are forwarded via IP to the server
S storing the matching trigger and then via IP to the
destination

! Problem: if server S is far away " triangle
routing problem

40

Avoid Triangle Routing Problem

! Each end-host picks the private triggers close to
itself

! How: sampling the identifier space
! Sampling can be done off-line

- I3 is an infrastructure " expect that mapping to be quite
stable

41

Conclusions

! Indirection – key technique to implement basic
communication abstractions and services

- e.g., Multicast, Mobility
! Possible to build efficient indirection Layer on top

of IP
! Shows the power of a simple, efficient primitive

