
CS 268: Congestion Control
and Avoidance

Kevin Lai
Feb 4, 2002

laik@cs.berkeley.edu 2

Problem

! At what rate do you send data?
- What is max useful sending rate for different apps?

! two components
- flow control

• make sure that the receiver can receive
• sliding-window based flow control:

❢ receiver reports window size to sender
❢ higher window " higher throughput
❢ throughput = wnd/RTT

- congestion control
• make sure that the network can deliver

laik@cs.berkeley.edu 3

Goals

! Robust
- latency: 50us (LAN), 133ms (min, anywhere on Earth,

wired), 1s (satellite), 260s (ave Mars)
• 104-106 difference

- bandwidth: 9.6Kb/s (then modem, now cellular), 10 Tb/s
• 109 difference

- 0-100% packet loss
- path may change in middle of session (why?)
- network may/may not support explicit congestion

signaling
• incremental deployment

! Distributed control (survivability)

laik@cs.berkeley.edu 4

Non-decreasing Efficiency under Load

! Efficiency =
useful_work/time

! critical property of
system design

- network technology,
protocol or application

! otherwise, system
collapses exactly when
most demand for its
operation

! trade lower overall
efficiency for this?

Load
Ef

fic
ie

nc
y

knee

cliff

ok? good

laik@cs.berkeley.edu 5

Congestion Collapse

! Decrease of network efficiency under load
! Waste resources on useless or undelivered data
! All layers

- load→ increased control traffic (e.g. BGP bug)
! Network layer

- load→drops, ≥1 fragment dropped
! Transport layer

- retransmit too many times
- no congestion control / avoidance

! Application layer
- load→delay, user uninterested once data arrives
- load→delay, user aborts uncompleted session

laik@cs.berkeley.edu 6

Transport Layer
Congestion Collapse 1

! network is congested (a router drops packets)
! the receiver didn’t get a packet

- know from timeout [JK88], and/or duplicate ack [FF95]
! retransmit packet
! wait, but not long enough (why?)

- timeout too short, or
- more acks of following packets

! retransmit again
! rinse, repeat
! assume that everyone is doing the same
! network will become more and more congested

- with duplicate packets rather than new packets

laik@cs.berkeley.edu 7

Transport Layer
Congestion Collapse 1 Solutions

! Fix timeout [JK88]
- keep mean RTT using low pass filter (why?)
- keep variance of RTT (actually (mean_deviation)2,

why?)
- timeout = a + 4v
- assumes delays have poisson/normal distribution (from

queueing theory)
- still good enough?
- always use timeout to detect packet loss?

laik@cs.berkeley.edu 8

Transport Layer
Congestion Collapse 2

! Waste resources on undelivered data
! A flow sends data at a high rate despite loss
! Its packets consume bandwidth at earlier links, only

to be dropped at a later link

90% loss

bw wastedignores loss

Penalized

laik@cs.berkeley.edu 9

Congestion Collapse and Efficiency

! knee – point after which
- throughput increases slowly
- delay increases quickly

! cliff – point after which
- throughput decreases quickly to

zero (congestion collapse)
- delay goes to infinity

! Congestion avoidance
- stay at knee

! Congestion control
- stay left of (but usually close to)

cliff
! Note (in an M/M/1 queue)

- delay = 1/(1 – utilization)

Load

Load

Th
ro

ug
hp

ut
D

el
ay

knee cliff

over
utilization

under
utilization

saturation

congestion
collapse

laik@cs.berkeley.edu 10

Transport Layer
Congestion Collapse 2 Solutions

! Reduce loss by increasing buffer size. Why not?
! if congestion, then send slower

else if sending at lower than fair rate, then send
faster

- congestion control and avoidance (finally)
- how to detect network congestion?
- how to communicate allocation to sources?
- how to determine efficient allocation?
- how to determine fair allocation?

laik@cs.berkeley.edu 11

Metrics

! Efficiency
- ratio of aggregate throughput to capacity

! Fairness
- degree to which everyone is getting equal share

! Convergence time (responsiveness)
- How long to get to fairness, efficiency

! Size of oscillation (smoothness)
- dynamic system→oscillations around optimal point

laik@cs.berkeley.edu 12

Detecting Congestion

! Explicit network signal
- Send packet back to source (e.g. ICMP Source Quench)

• control traffic congestion collapse
- Set bit in header (e.g. DEC DNA/OSI Layer 4[CJ89], ECN)

• can be subverted by selfish receiver [SEW01]
- Unless on every router, still need end-to-end signal
- Could be be robust, if deployed (DoS?)

! Implicit network signal
- Loss (e.g. TCP Tahoe, Reno, New Reno, SACK)

• +relatively robust, -no avoidance
- Delay (e.g. TCP Vegas)

• +avoidance, -difficult to make robust
- Easily deployable
- Robust enough? Wireless?

laik@cs.berkeley.edu 13

Communicating Allocation to
Sources

! Explicit
- Send packet back to source or set in packet header

• control traffic congestion collapse
• trust receiver

- Need to keep per flow state (anti-Internet architecture)
• what happens if router fails, route changes, mobility

- Unless on every router, still need end-to-end signal
- Efficient, fair, responsive, smooth

! Implicit: Chiu and Jain 1988
- Can converge to efficiency and fairness without explicit signal

of fair rate
- Easily deployable
- Good enough?

laik@cs.berkeley.edu 14

Efficient Allocation

! Too slow
- fail to take advantage of

available bandwidth →
underload

! Too fast
- overshoot knee → overload,

high delay, loss
! Everyone’s doing it

- may all under/over shoot →
large oscillations

! Optimal:

- Σxi=Xgoal
! Efficiency = 1 - distance from

efficiency line

User 1: x1
U

se
r 2

: x
2

Efficiency
line

2 user example

overload

underload

laik@cs.berkeley.edu 15

Fair Allocation

! Maxmin fairness
- flows which share the

same bottleneck get the
same amount of
bandwidth

! Assumes no knowledge
of priorites

! Fairness = 1 - distance
from fairness line

User 1: x1
U

se
r 2

: x
2

2 user example

2 getting
too much

1 getting
too much

fairness
line

() ()
()∑
∑= 2

2

i

i

xn
x

xF

laik@cs.berkeley.edu 16

Control System Model [CJ89]

! Simple, yet powerful model
! Explicit binary signal of congestion

- why explicit (TCP uses implicit)?
! Implicit allocation of bandwidth

User 1

User 2

User n

x1

x2

xn

Σ Σxi>Xgoal

y

laik@cs.berkeley.edu 17

Possible Choices

! multiplicative increase, additive decrease
- aI=0, bI>1, aD<0, bD=0

! additive increase, additive decrease
- aI>0, bI=0, aD<0, bD=0

! multiplicative increase, multiplicative decrease
- aI=0, bI>1, aD=0, 0<bD<1

! additive increase, multiplicative decrease
- aI>0, bI=0, aD=0, 0<bD<1

! Which one?

+
+

=+
decreasetxba
increasetxba

tx
iDD

iII
i)(

)(
)1(

laik@cs.berkeley.edu 18

Multiplicative Increase,
Additive Decrease

User 1: x1

U
se

r 2
: x

2

fairness
line

efficiency
line

(x1h,x2h)

(x1h+aD,x2h+aD)

(bI(x1h+aD), bI(x2h+aD))! Does not
converge to
fairness

- Not stable
at all

! Does not
converges to
efficiency

- stable iff

I

DI
hh b

abxx
−

==
121

laik@cs.berkeley.edu 19

Additive Increase,
Additive Decrease

User 1: x1

U
se

r 2
: x

2

fairness
line

efficiency
line

(x1h,x2h)

(x1h+aD,x2h+aD)

(x1h+aD+aI),
x2h+aD+aI))! Does not

converge to
fairness

- stable
! Does not

converge to
efficiency

- stable iff

ID aa =

laik@cs.berkeley.edu 20

Multiplicative Increase,
Multiplicative Decrease

User 1: x1

U
se

r 2
: x

2

fairness
line

efficiency
line

(x1h,x2h)

(bdx1h,bdx2h)

(bIbDx1h,
bIbDx2h)

! Does not
converge to
fairness

- stable
! Converges to

efficiency iff

10
1

<≤
≥

D

I

b
b

laik@cs.berkeley.edu 21

(bIbDx1h+aI,
bIbDx2h+aI)

Additive and Multiplicative Increase,
Multiplicative Decrease

User 1: x1

U
se

r 2
: x

2

fairness
line

efficiency
line

(x1h,x2h)

(bDx1h,bDx2h)

! Converges to
fairness

! Converges to
efficiency iff

- bI>=1
! Increments

smaller as
fairness increases

- effect on
metrics?

! Additive Increase
is better

- why?

laik@cs.berkeley.edu 22

Significance

! Characteristics
- converges to efficiency, fairness
- easily deployable
- fully distributed
- no need to know full state of system (e.g. number of

users, bandwidth of links) (why good?)
! Theory that enabled the Internet to grow beyond

1989
- key milestone in Internet development
- fully distributed network architecture requires fully

distributed congestion control
- basis for TCP

laik@cs.berkeley.edu 23

Modeling

! Critical to understanding complex systems
- [CJ89] model relevant for 13 years, 106 increase of

bandwidth, 1000x increase in number of users
! Criteria for good models

- realistic
- simple

• easy to work with
• easy for others to understand

- realistic, complex model → useless
- unrealistic, simple model → can teach something about

best case, worst case, etc.

laik@cs.berkeley.edu 24

TCP Congestion Contol

! [CJ89] provides theoretical basis
- still many issues to be resolved

! How to start?
! Implicit congestion signal

- loss
- need to send packets to detect congestion
- must reconcile with AIMD

! How to maintain equilibrium?
- use ACK: send a new packet only after you receive and

ACK. Why?
- maintain number of packets in network “constant”

1/18/2000 25

TCP Congestion Control

! Maintains three variables:
- cwnd – congestion window
- flow_win – flow window; receiver advertised window
- ssthresh – threshold size (used to update cwnd)

! For sending use: win = min(flow_win, cwnd)

1/18/2000 26

TCP: Slow Start

! Goal: discover congestion quickly
! How?

- quickly increase cwnd until network congested " get a
rough estimate of the optimal of cwnd

- Whenever starting traffic on a new connection, or
whenever increasing traffic after congestion was
experienced:

• Set cwnd =1
• Each time a segment is acknowledged increment

cwnd by one (cwnd++).
! Slow Start is not actually slow

- cwnd increases exponentially

laik@cs.berkeley.edu 27

Slow Start Example

! The congestion
window size
grows very
rapidly

! TCP slows down
the increase of
cwnd when
cwnd >=
ssthresh

ACK for segment 1

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

ACK for segments 2 + 3

cwnd = 4 segment 4
segment 5
segment 6
segment 7

ACK for segments 4+5+6+7

cwnd = 8

laik@cs.berkeley.edu 28

Congestion Avoidance

! Slow down “Slow Start”
! If cwnd > ssthresh then

each time a segment is acknowledged
increment cwnd by 1/cwnd (cwnd += 1/cwnd).

! So cwnd is increased by one only if all segments have been
acknowlegded.

! (more about ssthresh latter)

laik@cs.berkeley.edu 29

Slow Start/Congestion Avoidance
Example

! Assume that
ssthresh = 8

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

cwnd = 9

cwnd = 10

0
2
4
6
8

10
12
14

t=0 t=2 t=4 t=6
Roundtrip times

C
w

nd
 (i

n
se

gm
en

ts
)

ssthresh

1/18/2000 30

Putting Everything Together:
TCP Pseudocode

Initially:
cwnd = 1;
ssthresh = infinite;

New ack received:
if (cwnd < ssthresh)

/* Slow Start*/
cwnd = cwnd + 1;

else
/* Congestion Avoidance */
cwnd = cwnd + 1/cwnd;

Timeout:
/* Multiplicative decrease */
ssthresh = win/2;
cwnd = 1;

while (next < unack + win)
transmit next packet;

where win = min(cwnd,
flow_win);

unack next

win

seq #

1/18/2000 31

The big picture

Time

cwnd

Timeout

Slow Start

Congestion
Avoidance

laik@cs.berkeley.edu 32

Fast Retransmit

! Don’t wait for window to
drain

! Resend a segment after 3
duplicate ACKs

- remember a duplicate
ACK means that an out-of
sequence segment was
received

! Notes:
- duplicate ACKs due to

packet reordering
• why reordering?

- iwindow may be too small
to get duplicate ACKs

ACK 1

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

ACK 3
cwnd = 4 segment 4

segment 5
segment 6
segment 7

ACK 1

3 duplicate
ACKs

ACK 4

ACK 4

ACK 4

laik@cs.berkeley.edu 33

Fast Recovery

! After a fast-retransmit set cwnd to ssthresh/2
- i.e., don’t reset cwnd to 1

! But when RTO expires still do cwnd = 1
! Fast Retransmit and Fast Recovery "

implemented by TCP Reno; most widely used
version of TCP today

1/18/2000 34

Fast Retransmit and Fast Recovery

! Retransmit after 3 duplicated acks
- prevent expensive timeouts

! No need to slow start again
! At steady state, cwnd oscillates around the

optimal window size.

Time

cwnd

Slow Start

Congestion
Avoidance

laik@cs.berkeley.edu 35

Reflections on TCP

! assumes that all sources cooperate
! assumes that congestion occurs on time scales greater

than 1 RTT
! only useful for reliable, in order delivery, non-real time

applications
! vulnerable to non-congestion related loss (e.g. wireless)
! can be unfair to long RTT flows

