
CS 268: Lecture 5
(Project Suggestions)

Ion Stoica
February 6, 2002

istoica@cs.berkeley.edu 2

Project Related with Internet
Indirection Infrastructure (i3)

! Goal: provide an uniform abstraction for basic
communication primitives:

- Unicast
- Multicast
- Anycast

! Next: overview of i3

istoica@cs.berkeley.edu 3

Motivations

! Today’s Internet is built around a point-to-point
communication abstraction:
- Send packet “p” from host “A” to host “B”

! This abstraction allows Internet to be highly scalable
and efficient, but…

! … not appropriate for applications that require other
communication abstractions:
- Multicast
- Anycast
- Mobility
- …

istoica@cs.berkeley.edu 4

Why?

! Point-to-point communication abstraction implicitly
assumes that there is one sender and one receiver, and
that they are placed at fixed and well-known locations

- E.g., a host identified by the IP address 128.32.xxx.xxx is most
likely located in the Berkeley area

istoica@cs.berkeley.edu 5

Key Observation

! All previous solutions use a simple but powerful
technique: indirection

- Assume a logical or physical indirection point
interposed between sender(s) and receiver(s)

! Examples:
- IP multicast assumes a logical indirection point: the IP

multicast address
- Mobile IP assumes a physical indirection point: the

home agent

istoica@cs.berkeley.edu 6

Our Solution

! Add an efficient indirection layer (IL) on top of IP
- Transparent for legacy applications

! Use an overlay network to implement IL
- Incrementally deployable; don’t need to change IP

IP

TCP/UDP

Application

IL

istoica@cs.berkeley.edu 7

Internet Indirection Infrastructure
! Change communication abstraction: instead of point-to-

point, exchange data by name
- Each packet is associated an identifier ID
- To receive a packet with identifier ID, receiver R maintains a

trigger (ID, R) into the overlay network

Sender Receiver (R)

ID R

trigger

send(ID, data)
send(R, data)

istoica@cs.berkeley.edu 8

Service Model

! Best-effort service model (like IP)
! Triggers are periodically refreshed by end-hosts
! Reliability, congestion control, and flow-control

implemented at end-hosts

istoica@cs.berkeley.edu 9

Mobility

! Host just needs to update its trigger as moves from one
subnet to another

! Both sender and receiver can be mobile
! Can eliminate the “triangle routing problem”

Sender
Receiver

(R1)ID R1

send(ID,data) send(R1, data)

istoica@cs.berkeley.edu 10

Mobility

! Host just needs to update its trigger as moves from one
subnet to another

! Both sender and receiver can be mobile
! Can eliminate the “triangle routing problem”

Sender

Receiver
(R2)

ID R2

send(ID,data)

send(R2, data)

istoica@cs.berkeley.edu 11

Multicast

! Unifies multicast and unicast abstraction
- Multicast: receivers insert triggers with the same identifier

! An application can dynamically switch between multicast and
unicast

Sender Receiver (R1)ID R1

send(ID,data) send(R1, data)

Receiver (R2)

ID R2

send(R2, data)

istoica@cs.berkeley.edu 12

Composable Services

! Use a stack of IDs to encode the successions of operations
to be performed on data (e.g., transcoding)

! Advantages
- Don’t need to configure path
- Load balancing and robustness easy to achieve

Sender
(MPEG)

Receiver R
(JPEG)

ID_MPEG/JPEG S_MPEG/JPEG
ID R

send((ID_MPEG/JPEG,ID), data)

S_MPEG/JPEG

send(ID, data) send(R, data)

istoica@cs.berkeley.edu 13

Composable Services (cont’d)

! Both receivers and senders can specify the operations to be
performed on data

Receiver R
(JPEG)ID_MPEG/JPEG S_MPEG/JPEG

ID (ID_MPEG/JPEG, R)

send(ID, data)

S_MPEG/JPEG

Sender
(MPEG)

send((ID_MPEG/JPEG, R), data)

send(R, data)

istoica@cs.berkeley.edu 14

Anycast

! Generalize the matching scheme used to forward a
packet

- Until now we assumed exact matching
! Next, we assume:

- Exact matching on the most significant l bits of ID
- Longest prefix matching on the remaining bits (ID size = m)

m

l

exact matching LP matching identifier

istoica@cs.berkeley.edu 15

Anycast (cont’d)
! Anycast is simply a byproduct of the new matching scheme

- Each receiver in the anycast group inserts IDs that differ only in the
last l-m bits

Sender

Receiver (R1)
ID:x R1send(ID:a,data)

Receiver (R2)
ID:y R2

ID:z R3

Receiver (R3)

send(R1,data)

istoica@cs.berkeley.edu 16

Anycast (cont’d)

! Highly flexibile: the least significant l-m bits of ID
are application specific

! Two examples:
- Load balancing
- Proximity

istoica@cs.berkeley.edu 17

Idea 1: Load Balancing

! Assumptions:
- N servers of capacity Ci, 1 <= i <= N
- M clients downloading files from these servers

! Goal: come up with an algorithm to insert triggers
and set up their identifiers such that to balance
the load in the presence of server failures

istoica@cs.berkeley.edu 18

Idea 2: Multicast

! Problem: triggers with the same identifiers are
stored at the same server " not scalable

! Problem: extend i3 infrastructure to support large
scale multicasts

istoica@cs.berkeley.edu 19

Idea 3: Transcoding Application

! Design a transcoding application
- From one video format to another (e.g., MPEG "

H.263), or
- From one data format to another (e.g., HTML " WML)

! Note: the goal of the project is not to design the
transcoder, but to demonstrate the service
composition function

istoica@cs.berkeley.edu 20

Idea 4: Migrate-able End-to-End
Protocols

! Modify TCP such that it is possible to change the
receiving machine in the middle of the transfer!

! A and B open a TCP connection (A receiver; B
source)

! A changes to A’
! B continue to send data to A; without creating a

new connection
! Challenge: transparently transfer the receiver

state from A to A’

istoica@cs.berkeley.edu 21

Idea 5: i3 in Sensornets

! Design and implement i3 in Sensornets
! Challenge: there is no undelying point to point

communication in sensornets

istoica@cs.berkeley.edu 22

Other Project Ideas

istoica@cs.berkeley.edu 23

Idea 6: Reducing (elimination)
Multicast State in Routers

! Today each router maintain state for each multicast
group that has traffic traversing it

! Problem: state is hard to maintain and manage " not
scalable

! Extreme solution: maintain all receiver addresses in
each packet

- Routers don’t need to maintain any state, but
- Packet headers can become very large " huge overhead

! Solution: design an algorithm in between
- Maintain some state in routers and some in packets

! Note: you can think either at the IP or application
layer

istoica@cs.berkeley.edu 24

Idea 7: A Self-Organizing Overlay
Multicast Tree Algorithm

! Goal: design and simulate a self-organizing
multicast tree algorithm for overlay networks

! Algorithm idea: have overlay nodes decide to
add/collapse branches in the multicast tree

! Example:

istoica@cs.berkeley.edu 25

Idea 7: A Self-Organizing Overlay
Multicast Tree Algorithm

! Goal: design and simulate a self-organizing
multicast tree algorithm for overlay networks

! Algorithm idea: have overlay nodes decide to
add/collapse branches in the multicast tree

! Example:

istoica@cs.berkeley.edu 26

Forwarding in Low Energy Wireless
Networks

! Problem: each node cannot afford to remain ON all
the time

- a node can communicate/receive data only when it is ON
! Two nodes can communicate only when both of

them are simultaneously ON
! A node stores a packet in transit until it finds the

next hop ON

istoica@cs.berkeley.edu 27

Ideas 8 & 9

! Assume routing tables are known
! Assume that each node is independently

switching between ON and OFF states
! Idea 8:

- Study the tradeoff between the fraction of time a node is
ON and the time to deliver a message and the amount
of storage required by a node

! Idea 9:
- Design a self-synchronization algorithm and study its

properties (i.e., a distributed algorithm that will result in
all nodes being ON at the same time)

istoica@cs.berkeley.edu 28

Idea 10: Implement Round Robin at the
Application Layer

! Problem: flow isolation (UDP can kill TCP)

! Solution outline:

TCP

UDP

TCP

UDP

Run RR
Application level

congestion control

istoica@cs.berkeley.edu 29

Bottleneck link

Telnet

WEB

FTP

...

Idea 11: Receiver-Controlled
Cooperative Sharing

! You control the downstream router or the end host
! You want to control the bandwidth allocation policy

- Manipulate TCP packets to adjust the sender’s transmission
rate

istoica@cs.berkeley.edu 30

Next Step

! You can either choose one of the projects we discussed
during this lecture, or come up with your own

! Pick your partner, and submit a one page proposal by
February 13. The proposal needs to contain:

- The problem you are solving
- Your plan of attack with milestones and dates
- Any special resources you may need

