
CS 268: Wireless Transport Protocols

Kevin Lai Feb 13, 2002

Motivation

- Wireless connectivity proliferating
 - Satellite, line-of-sight microwave, line-of-sight laser, cellular data (CDMA, GPRS, 3G), wireless LAN (802.11a/b), Bluetooth
 - More cell phones than currently allocated IP addresses
- Wireless \rightarrow non-congestion related loss
 - LOS blocked (plane, bird), rain, lightning, microwave ovens, sunspots, EMP
 - signal fading: distance, buildings
- Non-congestion related loss \rightarrow
 - reduced efficiency for transport protocols that depend on loss as implicit congestion signal (e.g. TCP)

Problem

Solutions

- Modify transport protocol
- Modify link layer protocol
- Hybrid

Modify Transport Protocol

- Explicit Congestion/Loss Signal
 - Distinguish congestion losses:
 - Explicit congestion signal
 - Congestion avoidance
 - Robust
 - Must be deployed at all routers
 - Still need end-to-end signal of congestion
 - Distinguish non-congestion losses:
 - Explicit Loss Notification (ELN) [BK98]
 - If packet lost due to interference, set header bit
 - Only needs to be deployed at wireless router
 - Need to modify end hosts
 - How to determine loss cause?
 - What if ELN gets lost?

Modify Transport Protocol

- TCP Westwood [CGM+01]
 - Use packet inter-arrival time as implicit congestion signal instead of loss
 - Allows congestion avoidance
 - Robustness is unclear
- TCP SACK
 - TCP sends cumulative ack only→cannot distinguish multiple losses in a window
 - Selective acknowledgement: indicate exactly which packets have not been received
 - Allows filling multiple "holes" in window in one RTT
 - Quick recovery from a burst of wireless losses
 - Still causes TCP to reduce window

Modify Link Layer

- How does IP convey reliability requirements to link layer?
 - not all protocols are willing to pay for reliability
 - Read IP TOS header bits(8)?
 - must modify hosts
 - TCP = 100% reliability, UDP = whatever?
 - what about other degrees?
 - consequence of lowest common denominator IP architecture
- Link layer retransmissions
 - Wireless link adds seq. numbers and acks below the IP layer
 - If packet lost, retransmit it
 - May cause reordering
 - Causes at least one additional link RTT delay
 - Some applications need low delay more than reliability e.g. IP telephony

Modify Link Layer

- Forward Error Correction (FEC) codes
 - k data blocks, use code to generate n>k coded blocks
 - can recover original k blocks from any k of the n blocks
 - n-k blocks of overhead
 - trade bandwidth for loss
 - can recover from loss in time independent of link RTT
 - useful for links that have long RTT (e.g. satellite)
 - pay n-k overhead whether loss or not
 - need to adapt n, k depending on current channel conditions

Hybrid

- Indirect TCP [BB95]
 - Split TCP connection into two parts
 - regular TCP from fixed host (FH) to base station
 - modified TCP from base station to mobile host (MH)
 - base station fails?
 - wired path faster than wireless path?
- TCP Snoop [BSK95]
 - Base station snoops TCP packets, infers flow
 - cache data packets going to wireless side
 - If dup acks from wireless side, suppress ack and retransmit from cache
 - soft state
 - what about non-TCP protocols?
 - what if wireless not last hop?

Conclusion

- Which is most efficient?
 - not clear
 - uncomparable simulation results
 - different simulation parameters (error rate, RTT, etc.)
 - different protocols or different implementations
- Cellular, 802.11b
 - link level retransmissions
 - 802.11b: acks necessary anyway in MAC for collision avoidance
 - real time applications could have problems
 - not an issue yet (why?)
- Satellite: FEC because of long RTT issues
- Link layer solutions give adequate, predictable performance, easily deployable