CS 294-I3
 Advanced Computer Graphics

Differential Geometry Basics

James F. O'Brien
Associate Professor
U.C. Berkeley

Topics

- Vector and Tensor Fields
- Divergence, curl, etc.
- Parametric Curves
- Tangents, curvature, and etc.
- Parametric Surfaces
- Normals, tangents, curvature, etc.
- Implicit Surfaces
- Normals, curvature, etc.

Vectors

- A vectors defines a magnitude and direction
- Not just a list of numbers

$$
\|\mathbf{v}\| \quad \hat{\mathbf{v}}=\mathbf{v} /\|\mathbf{v}\|
$$

- Particular numbers are an artifact of the coordinate system we chose
- Not all coordinate systems are orthonormal $\quad \mathbf{v}=\left[v_{x}, v_{y}, v_{z}\right]$
- Nearly everything that is useful can be defined w/o coordinate system
- Vectors transform like vectors $\mathbf{v}^{\prime}=\mathbf{A} \cdot \mathbf{v}$
- No set location (e.g. no root)
- But may be functions of location

$$
\begin{aligned}
\mathbf{v} & =\mathbf{v}(u) \\
\mathbf{v} & =\mathbf{v}(x, y)
\end{aligned}
$$

Tensors

- Tensors transform like tensors

$$
\text { e.g. } \mathbf{T}^{\prime}=\mathbf{A} \cdot \mathbf{T} \cdot \mathbf{A}^{\top}
$$

- Tensors used to define oriented quantities
- Independent of coordinate system
- Specific realization will depend on coordinate system
- Cartesian tensors -- orthonormal coordinate system
- General tensors -- non-orthonormal coordinate system
- Tensors have rank

$$
\mathbf{T}^{\prime}=\mathbf{A} \cdot \mathbf{T} \cdot \mathbf{A}^{-1}
$$

- Not related to dimension of space
- Rank $0 \rightarrow$ scalars
- Rank I \rightarrow vectors
- Rank $2 \rightarrow$ matrices
- Rank $3 \rightarrow$ don't work well in matrix-vector notation

Tensors

- Examples

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{b}=\mathbf{a}^{\top} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \operatorname{Cos}(\angle \mathbf{a b}) \\
& \mathbf{a} \cdot \mathbf{b}^{\top}=\mathbf{P} \cdots \begin{array}{l}
(\mathbf{A} \cdot \mathbf{a}) \cdot(\mathbf{A} \cdot \mathbf{b})^{\top}= \\
\mathbf{A} \cdot\left(\mathbf{a} \cdot \mathbf{b}^{\top}\right) \cdot \mathbf{A}^{\top}=
\end{array} \\
& \quad \mathbf{A} \cdot \mathbf{P} \cdot \mathbf{A}^{\top}
\end{aligned}
$$

$$
\mathbf{R}=\mathbf{x}^{\prime} \cdot \mathbf{x}^{\top}+\mathbf{y}^{\prime} \cdot \mathbf{y}^{\top}+\mathbf{z}^{\prime} \cdot \mathbf{z}^{\top}
$$

$$
\mathbf{v}_{1} \cdot \mathbf{v}_{1}^{\top}+\mathbf{v}_{2} \cdot \mathbf{v}_{2}^{\top}=\mathbf{S}
$$

$$
\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \cdot\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & \frac{3}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right]
$$

Note the way inner and otter products behave...

Summation Notation

- Notation due to Einstein
- Makes life much easier
- Takes a while to get used to
- Useful in other contexts as well
- Free index
- Appears on both sides
- Unique in each term
- Implied "for all"

$$
\begin{array}{r}
\mathbf{c}^{\top}=\mathbf{b}^{\top} \cdot \mathbf{A}^{\top} \longrightarrow c_{i}=b_{j} A_{i j} \\
\mathbf{c}=\mathbf{A} \cdot \mathbf{b} \longrightarrow c_{i}=b_{j} A_{i j}
\end{array}
$$

- Dummy index
- Appears exactly twice in each term
- Implied "sum over" $\quad \mathbf{A}^{\prime}=\mathbf{R A} \mathbf{R}^{\top} \longrightarrow A_{i j}^{\prime}=A_{k l} R_{i k} R_{j l}$
- Different for general tensors

Summation Notation

- Two special symbols
- Delta $\delta_{i j}$
- Permutation $\varepsilon_{i j k}$
$\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}$
$\varepsilon_{i j k}=\left\{\begin{array}{cl}1 & \text { if } i, j, k \text { are even permutation of } 1,2,3 \\ -1 & \text { if } i, j, k \text { are odd permutation of } 1,2,3 \\ 0 & \text { else }\end{array}\right.$

If you're slumming in $\Re^{2} \quad \varepsilon_{i j}=\left\{\begin{array}{cl}1 & \text { if } i, j \text { are } 1,2 \\ -1 & \text { if } i, j \text { are } 2,1 \\ 0 & \text { else }\end{array}\right.$

Scalar Fields

- Scalar as function of some spatial variable(s)
- e.g.

$$
f(x, y)=f(\mathbf{x})=\operatorname{Sin}(x) \operatorname{Sin}(y)
$$

Density Plot

Height-field Plot

Vector Fields

- Vector as function of some spatial variable(s)
- e.g.:
$\mathbf{v}(x, y)=\mathbf{v}(\mathbf{x})=[\operatorname{Sin}(x), \operatorname{Cos}(y)]$

$$
\mathbf{v}(x, y)=\mathbf{v}(\mathbf{x})=[1, \operatorname{Sin}(y), 0]
$$

Differential Operators on Fields

- Derivatives of field w.r.t. spatial coordinates
- Coordinates implicit given field parameterization
- Linear operators on the field
- Not tied to any particular coordinate system

$$
\begin{aligned}
\boldsymbol{\nabla} & =\sum_{i} \mathbf{e}_{i} \frac{\partial}{\partial x_{i}} \\
\boldsymbol{\nabla} & =\left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right] \\
\nabla_{i} & =\partial_{i}=\frac{\partial}{\partial x_{i}}
\end{aligned}
$$

- Basic operators
- Gradient
- Divergence
- Curl
- Laplacian
- All expressed with $\boldsymbol{\nabla}$ (a.k.a. Nabla or del)

Gradient

- Often applied to scalar fields
- Gives direction of steepest accent
- Also has meaning for higher rank fields
- Elevates rank by one
- e.g. velocity gradient of a Newtonian fluid gives the strain rate

Divergence

- For a vector field it describes the net expansion or contraction
- Lowers rank by one
- Divergence of vector field is a scalar
- An inner product of derivatives with the field

$\operatorname{div} \mathbf{v}(\mathbf{x})=\boldsymbol{\nabla} \cdot \mathbf{v}(\mathbf{x})=\boldsymbol{\nabla}^{\top} \cdot \mathbf{v}(\mathbf{x})=\frac{\partial \mathbf{v}_{x}(\mathbf{x})}{\partial x_{1}}+\frac{\partial \mathbf{v}_{y}(\mathbf{x})}{\partial x_{2}}+\frac{\partial \mathbf{v}_{z}(\mathbf{x})}{\partial x_{3}}$

$$
\boldsymbol{\nabla} \cdot[\operatorname{Sin}(x), \operatorname{Cos}(y)]=-\operatorname{Cos}(x)+\operatorname{Sin}(y)
$$

- For a vector field it describes the net "rotation"
- Cross product of derivatives with the field

- Scaler in 2D, vector in 3D

$$
\operatorname{curl} \mathbf{v}(\mathbf{x})=\boldsymbol{\nabla} \times \mathbf{v}(\mathbf{x})
$$

$\boldsymbol{\nabla} \times[\operatorname{Cos}(y), 0]=-\operatorname{Sin}(y)$

Laplacian

- Divergence of Gradient
- Scalar second derivative operator
- Difference between a point and its surround
- Often used for smoothing of some sort

$$
\boldsymbol{\nabla} \cdot \boldsymbol{\nabla}=\boldsymbol{\nabla}^{2}=\frac{\partial^{2}}{\partial x x}+\frac{\partial^{2}}{\partial y y}+\frac{\partial^{2}}{\partial z z}
$$

$\cos ^{2}(x) \sin ^{2}(y)$
$2 \cos ^{2}(x) \cos ^{2}(y)-4 \cos ^{2}(x) \sin ^{2}(y)+2 \sin ^{2}(x) \sin ^{2}(y)$

Notation Examples

$$
\begin{aligned}
& \mathbf{v}(\mathbf{x})=\boldsymbol{\nabla} f(\mathbf{x}) \longrightarrow v_{i}=\partial_{i} f \\
& s(\mathbf{x})=\boldsymbol{\nabla} \cdot \mathbf{v}(\mathbf{x}) \longrightarrow s=\partial_{i} v_{i} \\
& \mathbf{c}(\mathbf{x})=\boldsymbol{\nabla} \times \mathbf{v}(\mathbf{x}) \longrightarrow \\
& c_{i}=\varepsilon_{i j k} \partial_{j} v_{k} \\
& \mathbf{a}(\mathbf{x})=(\mathbf{v}(\mathbf{x}) \cdot \boldsymbol{\nabla}) \mathbf{b}(\mathbf{x}) \longrightarrow \\
& a_{i}=v_{j} \partial_{j} b_{i}
\end{aligned}
$$

Fun Facts

$\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \mathbf{v})=0$

Both are obvious in tensor notation

$\boldsymbol{\nabla} \times(\boldsymbol{\nabla} s)=0$

- Helmholtz-Hodge decomposition
- Smooth, differentiable vector field

$\nabla s \quad$ irrotational or curl-free part
$\boldsymbol{\nabla} \times \mathbf{v}$ solenoidal or divergence-free part
h harmonic part

$$
\frac{\mathrm{d} f}{\mathrm{~d} \mathbf{x}}=\mathbf{x} \cdot \nabla f
$$

Add a picture or something...

Parametric Curves

- Curve is a geometric entity
- Set of points in space
- In neighborhood of any point it is isomorphic to a line
- Generator function: $\mathbf{x}=\mathbf{x}(t)$
- A vector valued function (careful with "vector")
- A scalar function for each dimension of embedding space
- A particular parameterization is arbitrary and not unique
- Parameterization is not intrinsic

$[\cos (\theta), \sin (\theta)]$

$$
\left[\frac{2 u}{u^{2}+1}, \frac{1-u^{2}}{u^{2}+1}\right]
$$

Derivatives

- Given function for curve we can take derivatives w.r.t. the parameter:

$$
\dot{\mathbf{x}}=\frac{d \mathbf{x}}{d t}
$$

- The derivatives have names based on physical analogs
- Velocity
- Acceleration
- Jerk
- Snap, Crackle, and Pop
- Speed is the magnitude of velocity $s=\|\dot{\mathbf{x}}\|$
- All are dependent on parameterization and not intrinsic
- Note that, e.g., velocity is a vector field on t

Arclength

- Let $s=A(t)=\int_{0}^{t}\|\mathbf{x}(\tau)\| d \tau$
- $A(t)$ is the arclength of the curve
- The arclength reparameterization of the curve is

$$
\hat{\mathbf{x}}(s)=\mathbf{x}\left(A^{-1}(s)\right)
$$

- The arclength parameterization is unique up to sign change and translation
- $\frac{d \hat{\mathbf{x}}(s)}{d s}=\frac{d \mathbf{x}(t)}{d t}\left\|\frac{d \mathbf{x}(t)}{d t}\right\|^{-1}$ and $\left\|\frac{d \hat{\mathbf{x}}(s)}{d s}\right\|=1$

Closed form arclength parameterization may be hard to find.

Tangent Vector

- Tangent vector is a geometric property of the curve
- Does not depend on parameterization
- Tangent may exist where velocity is zero or may be undefined

$$
\mathbf{T}=\frac{d \hat{\mathbf{x}}(s)}{d s}
$$

Curvature and Normal

$$
\begin{aligned}
& \text { Note: } \mathbf{T} \cdot \mathbf{T}=1 \\
&(\mathbf{T} \cdot \mathbf{T})^{\prime}=(1)^{\prime} \\
& \mathbf{T} \cdot \mathbf{T}^{\prime}=0 \\
& \text { Therefore: } \quad \mathbf{T} \perp \mathbf{T}^{\prime}
\end{aligned}
$$

We can write:

Curvature of the curve at Normal of the curve at this point this point

Taylor expansion implies that if curvature is zero curve must be locally a straight line.

Frenet Frame

- Define binormal by $\mathbf{B}=\mathbf{T} \times \mathbf{N}$
- Gives us orthonormal coordinate frame: Frenet Frame
- Moves along curve
- Give local frame of reference

Not defined at inflection points where there is no curvature...

Frenet Frame

- Osculating Plane
- Defined by N and T
- Locally contains the curve
- Normal Plane
- Defined by N and B
- Locally perpendicular to the curve

Torsion

$$
\begin{aligned}
& \mathbf{B} \cdot \mathbf{B}=1 \rightarrow \quad \mathbf{B} \cdot \mathbf{B}^{\prime}=0 \\
& \mathbf{B} \cdot \mathbf{T}=0 \rightarrow \\
& \mathbf{B}^{\prime} \cdot \mathbf{T}+\mathbf{B} \cdot \mathbf{T}^{\prime}=0 \\
& \rightarrow \\
& \mathbf{B}^{\prime} \cdot \mathbf{T}=-\mathbf{B} \cdot \mathbf{T}^{\prime}=-\mathbf{B} \cdot \kappa \mathbf{N}=0
\end{aligned}
$$

$\mathbf{B}^{\prime} \perp \mathbf{B} \quad$ and $\quad \mathbf{B}^{\prime} \perp \mathbf{T}$

Change in binormal is then $\mathbf{B}^{\prime}=-\tau \mathbf{N}$
Torsion
If torsion is zero, we have a planar curve.

The minus sign is to make positive torsion CCW w.r.t tangent.

Evolution of Frenet Frame

$\mathbf{N}^{\prime} \perp \mathbf{N} \rightarrow \mathbf{N}^{\prime}=\alpha \mathbf{T}+\beta \mathbf{B}$
$\alpha=\mathbf{N}^{\prime} \cdot \mathbf{T}$
Recall it's an orthonormal basis.
Differentiate $\mathbf{N} \cdot \mathbf{T}=0$ and $\mathbf{N} \cdot \mathbf{B}=0$
Yields $\mathbf{N}^{\prime} \cdot \mathbf{T}=-\mathbf{N} \cdot \kappa \mathbf{N}=-\kappa$

$$
\mathbf{N}^{\prime} \cdot \mathbf{B}=-\mathbf{N} \cdot(-\tau) \mathbf{N}=\tau
$$

Therefore $\mathbf{N}^{\prime}=-\kappa \mathbf{T}+\tau \mathbf{B}$
We know $\mathbf{T}^{\prime}=\kappa \mathbf{N}$ and $\mathbf{B}^{\prime}=-\tau \mathbf{B}$

Evolution of Frenet Frame

$$
\begin{aligned}
& \mathbf{T}^{\prime}=\kappa \mathbf{N} \\
& \mathbf{N}^{\prime}=-\kappa \mathbf{T}+\tau \mathbf{B} \\
& \mathbf{B}^{\prime}=-\tau \mathbf{N}
\end{aligned}
$$

$$
\begin{align*}
& {\left[\begin{array}{c}
\mathbf{T}^{\prime} \\
\mathbf{N}^{\prime} \\
\mathbf{B}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right] \cdot\left[\begin{array}{c}
\mathbf{T} \\
\mathbf{N} \\
\mathbf{B}
\end{array}\right]} \\
& \text { ODE for evolution of Frenet Frame }
\end{align*}
$$

Given starting point, if you know curvature and torsion, then you can build curve.
(Need "speed" also if not arclength parameterized.)
Discrete analogy: stacking up macaroni

Radius of Curvature

$$
\begin{aligned}
& \begin{array}{l}
\hat{\mathbf{x}}(s)=\left[r \cos \left(\frac{s}{r}\right), r \sin \left(\frac{s}{r}\right)\right] \\
\text { Note that } \| \\
\mathbf{T}=\left[-\sin \left(\frac{s}{r}\right), \cos \left(\frac{s}{r}\right)\right] \\
\mathbf{T}^{\prime}=\left[-\frac{1}{r} \cos \left(\frac{s}{r}\right),-\frac{1}{r} \sin \left(\frac{s}{r}\right)\right] \\
\kappa=\left\|\mathbf{T}^{\prime}\right\|=\frac{1}{r}
\end{array}
\end{aligned}
$$

$$
\text { Note that } \| \hat{\mathbf{x}}^{\prime}| |=1
$$

Curvature is inverse of radius of curvature.

Some Formulae

- For arclength parameterized curve

$$
\begin{aligned}
& \kappa=\left\|\hat{\mathbf{x}}(s)^{\prime \prime}\right\| \\
& \tau=\frac{\hat{\mathbf{x}}^{\prime} \cdot\left(\hat{\mathbf{x}}^{\prime \prime} \times \hat{\mathbf{x}}^{\prime \prime \prime}\right)}{\left\|\hat{\mathbf{x}}^{\prime \prime}\right\|^{2}}
\end{aligned}
$$

- For arbitrarily parameterized curve

$$
\begin{aligned}
\kappa & =\frac{\left\|\mathbf{x}^{\prime}(t) \times \mathbf{x}^{\prime \prime}(t)\right\|}{\left\|\mathbf{x}^{\prime}(t)\right\|^{3}} \\
\tau & =\frac{\mathbf{x}^{\prime}(t) \times \mathbf{x}^{\prime \prime}(t) \cdot \mathbf{x}^{\prime \prime \prime}(t)}{\left\|\mathbf{x}^{\prime}(t) \times \mathbf{x}^{\prime \prime}(t)\right\|^{2}}
\end{aligned}
$$

Field Evaluated Along a Curve

- Curve defined in some space
- $\mathbf{x}(t)$
- Function on embedding space of curve
- $f(\mathrm{x})$
- Composition function
- $f(\mathbf{x}(t))$
$\cdot \frac{\mathrm{d} f}{\mathrm{~d} t}=\nabla f \cdot \frac{\mathrm{~d} \mathbf{x}}{\mathrm{~d} t}$

Parametric Surfaces

- Surface is a geometric entity
- Set of points in space
- In neighborhood of any point it is isomorphic to a plane
- Generator function: $\mathbf{x}(\mathbf{u})$
- A vector valued function (careful with "vector")
- A scalar function for each dimension of embedding space
- Dimension of parameter is two
- A particular parameterization is arbitrary and not unique
- Parameterization is not intrinsic

Derivatives

- Given function for curve we can take derivatives w.r.t. the parameter:

$$
\frac{\partial \mathbf{x}(\mathbf{u})}{\partial u} \quad \frac{\partial \mathbf{x}(\mathbf{u})}{\partial v}
$$

- All are dependent on parameterization and not intrinsic
- Note that each one is a vector field on \mathbf{u}
- Examples of degeneracies

$\left[v^{3}, u, v^{2}\right]$

Tangent Space

- The tangent space at a point on a surface is the vector space spanned by

$$
\frac{\partial \mathbf{x}(\mathbf{u})}{\partial u} \quad \frac{\partial \mathbf{x}(\mathbf{u})}{\partial v}
$$

- Definition assumes that these directional derivatives are linearly independent.
- Tangent space of surface may exist even if the parameterization is bad
- For surface the space is a plane
- Generalized to higher dimension manifolds

Non Orthogonal Tangents

$$
\left[\begin{array}{c}
\cos (\theta 2 \pi) \cos (\phi p i / 2) \\
\sin (\theta 2 \pi) \cos (\phi \pi / 2) \\
\sin (\phi \pi / 2)
\end{array}\right]
$$

$$
\theta \in[0 . .1] \quad \phi \in[-1 . .1]
$$

$\left.\cos (2 \pi \theta) \cos \left(\frac{1}{2} \pi\left(\frac{1}{2}(1-|\phi|) \cos (6 \pi \theta) \phi+\phi\right)\right)\right]$
$\cos \left(\frac{1}{2} \pi\left(\frac{1}{2}(1-|\phi|) \cos (6 \pi \theta) \phi+\phi\right)\right) \sin (2 \pi \theta)$
$\left.\sin \left(\frac{1}{2} \pi\left(\frac{1}{2}(1-|\phi|) \cos (6 \pi \theta) \phi+\phi\right)\right) \quad\right]$

Normals

- The normal at a point is the unit vector perpendicular to the tangent space
- $\mathbf{N}=\frac{\partial_{u} \mathbf{x} \times \partial_{v} \mathbf{x}}{\left\|\partial_{u} \mathbf{x} \times \partial_{v} \mathbf{x}\right\|}$
- The normal direction is determined
- Up to a sign change
- Relative to surface

First Fundamental

Pick a direction in parametric space: $\mathrm{d} \mathbf{u}=[\mathrm{d} u, \mathrm{~d} v]$
Corresponding direction in the $\quad \mathrm{d} \mathbf{x}=\frac{\partial \mathbf{x}}{\partial u} \mathrm{~d} u+\frac{\partial \mathbf{x}}{\partial v} \mathrm{~d} v$ tangent plane:

$$
\mathrm{d} \mathbf{x}=\mathrm{d} \mathbf{u} \cdot \nabla \mathrm{x}(\mathbf{u})
$$

For unit speed in parametric space, the sped in the embedding space is

$$
\begin{gathered}
s^{2}=\mathrm{d} \mathbf{x} \cdot \mathrm{~d} \mathbf{x}=\mathrm{d} \mathbf{u}^{\top} \cdot(\nabla \mathbf{x}) \cdot(\nabla \mathbf{x})^{\top} \cdot \mathrm{d} \mathbf{u} \\
\mathrm{~d} \mathbf{x} \cdot \mathrm{~d} \mathbf{x}=\mathrm{d} \mathbf{u}^{\top} \cdot \mathbf{I} \cdot \mathrm{d} \mathbf{u}
\end{gathered} \quad \begin{aligned}
& \mathbf{I}=\left[\begin{array}{ll}
\partial_{u} \mathbf{x} \cdot \partial_{u} \mathbf{x} & \partial_{v} \mathbf{x} \cdot \partial_{u} \mathbf{x} \\
\partial_{u} \mathbf{x} \cdot \partial_{v} \mathbf{x} & \partial_{v} \mathbf{x} \cdot \partial_{v} \mathbf{x}
\end{array}\right] \quad I_{i j}=\left(\partial_{i} x_{k}\right)\left(\partial_{j} x_{k}\right)
\end{aligned}
$$

First Fundamental

$$
\mathbf{I}=\left[\begin{array}{cc}
\partial_{u} \mathbf{x} \cdot \partial_{u} \mathbf{x} & \partial_{v} \mathbf{x} \cdot \partial_{u} \mathbf{x} \\
\partial_{u} \mathbf{x} \cdot \partial_{v} \mathbf{x} & \partial_{v} \mathbf{x} \cdot \partial_{v} \mathbf{x}
\end{array}\right] \quad I_{i j}=\left(\partial_{i} x_{k}\right)\left(\partial_{j} x_{k}\right)
$$

- Encodes distance metric on the surface
- If tangents are orthonormal it reduces to identity
- Used as metric by Green's Strain
- Invariant w.r.t. translations and rotations of surface:

$$
\begin{aligned}
\left(\partial_{i} x_{k}^{\prime}\right)\left(\partial_{j} x_{k}^{\prime}\right) & =\left(\partial_{i} R_{k p} x_{p}\right)\left(\partial_{j} R_{k q} x_{q}\right) \\
& =R_{k p} R_{k q}\left(\partial_{i} x_{p}\right)\left(\partial_{j} x_{q}\right) \\
& =\delta_{p q}\left(\partial_{i} x_{p}\right)\left(\partial_{j} x_{q}\right) \\
& =\left(\partial_{i} x_{p}\right)\left(\partial_{j} x_{p}\right)
\end{aligned}
$$

First Fundamental

$$
\mathbf{I}=\left[\begin{array}{cc}
\partial_{u} \mathbf{x} \cdot \partial_{u} \mathbf{x} & \partial_{v} \mathbf{x} \cdot \partial_{u} \mathbf{x} \\
\partial_{u} \mathbf{x} \cdot \partial_{v} \mathbf{x} & \partial_{v} \mathbf{x} \cdot \partial_{v} \mathbf{x}
\end{array}\right] \quad I_{i j}=\left(\partial_{i} x_{k}\right)\left(\partial_{j} x_{k}\right)
$$

- Transforms like a tensor in parameter space:

$$
u_{i}^{\prime}=R_{i j} u_{j} \longrightarrow u_{i}=R_{j i} u_{j}^{\prime}
$$

Assume orthonormal transform...

$$
\begin{aligned}
\frac{\partial x_{k}}{\partial u_{i}^{\prime}} \frac{\partial x_{k}}{\partial u_{j}^{\prime}} & =\frac{\partial x_{k}}{\partial u_{p}} \frac{\partial u_{p}}{\partial u_{i}^{\prime}} \frac{\partial x_{k}}{\partial u_{q}} \frac{\partial u_{q}}{\partial u_{j}^{\prime}} \\
& =R_{i p} \frac{\partial x_{k}}{\partial u_{p}} \frac{\partial x_{k}}{\partial u_{q}} R_{j q} \\
I_{i j}^{\prime} & =R_{i p} I_{p q} R_{j q}
\end{aligned}
$$

Arclength Over Surface

$$
\begin{aligned}
l & =\int_{a}^{b}\left\|\frac{\mathrm{~d} \mathbf{c}(t)}{\mathrm{d} t}\right\| \mathrm{d} t \\
& =\int_{a}^{b} \sqrt{\|\mathrm{~d} \mathbf{x}\|^{2}} \mathrm{~d} t \\
& =\int_{a}^{b} \sqrt{\mathrm{~d} \mathbf{x} \cdot \mathrm{~d} \mathbf{x}} \mathrm{~d} t \\
& =\int_{a}^{b} \sqrt{\mathrm{~d} \mathbf{u}^{\top} \cdot \mathbf{I} \cdot \mathrm{d} \mathbf{u}} \mathrm{~d} t
\end{aligned}
$$

Principle Tangents

$$
x, y, z
$$

Bottom row is eigenvectors of \mathbf{I}

Not intrinsic features of the surface!

Principle Tangents

Orthonormal Parameterization

Eigen decomposition of Fist Fundamental

$$
\mathbf{I}=\mathbf{R S}^{2} \mathbf{R}^{\top}=\mathbf{A} \mathbf{A}^{\top}
$$

Define coordinate transform by

$$
\begin{aligned}
& \mathrm{d} \mathbf{u}^{\prime}=\mathbf{S} \mathbf{R}^{\top} \mathrm{d} \mathbf{u}=\mathbf{A}^{\top} \mathrm{d} \mathbf{u} \\
& \mathrm{~d} \mathbf{u}=\mathbf{R}(1 / \mathbf{S}) \mathrm{d} \mathbf{u}^{\prime}=\mathbf{A}^{-\mathrm{T}} \mathrm{~d} \mathbf{u}^{\prime}
\end{aligned}
$$

In transformed parameterization \mathbf{I} is the identity.

$$
\begin{aligned}
\mathrm{d} \mathbf{u}^{\top \top} \cdot \mathbf{I}^{\prime} \cdot \mathrm{d} \mathbf{u}^{\prime} & =\mathrm{d} \mathbf{u}^{\top} \cdot(1 / \mathbf{S}) \cdot \mathbf{R}^{\top} \cdot\left(\mathbf{R} \cdot \mathbf{S}^{2} \cdot \mathbf{R}^{\top}\right) \cdot \mathbf{R} \cdot(1 / \mathbf{S}) \cdot \mathrm{d} \mathbf{u}^{\prime} \\
& =\mathrm{d} \mathbf{u}^{\top} \cdot\left((1 / \mathbf{S}) \cdot \mathbf{R}^{\top} \cdot \mathbf{R} \cdot \mathbf{S}^{2} \cdot \mathbf{R}^{\top} \cdot \mathbf{R} \cdot(1 / \mathbf{S}) \cdot\right) \mathrm{d} \mathbf{u}^{\prime}
\end{aligned}
$$

Similar to definition of arclength reparameterization.

Second Fundamental

Let $\mathrm{d} \mathbf{x}$ be some tangent direction $\mathrm{d} \mathbf{x}=\mathrm{d} \mathbf{u} \cdot \nabla \mathbf{x}(\mathbf{u})$
The directional derivative of the normal is

$$
\nabla_{\mathbf{u}} \mathbf{N}=\frac{\partial \mathbf{N}}{\partial u} \mathrm{~d} u+\frac{\partial \mathbf{N}}{\partial v} \mathrm{~d} v
$$

The normal is unit length so it is perpendicular to its derivative.

As shown in top-down view, the three vectors may not be co-planar.
Surface may tilt to side as point moves.

Second Fundamental

Let $\mathrm{d} \mathbf{x}$ be some tangent direction $\mathrm{d} \mathbf{x}=\mathrm{d} \mathbf{u} \cdot \nabla \mathbf{x}(\mathbf{u})$
The directional derivative of the normal is

$$
\nabla_{\mathbf{u}} \mathbf{N}=\frac{\partial \mathbf{N}}{\partial u} \mathrm{~d} u+\frac{\partial \mathbf{N}}{\partial v} \mathrm{~d} v
$$

The change in normal restricted to the plane containing the tangent and normal is given by

$$
\begin{aligned}
-\mathbf{T} \cdot \mathbf{N}_{T} & =-\mathrm{d} \mathbf{x} \cdot \boldsymbol{\nabla}_{\mathbf{u}} \mathbf{N} \\
& =-(\mathrm{d} \mathbf{u} \cdot \nabla \mathbf{x}) \cdot(\mathrm{d} \mathbf{u} \cdot \nabla \mathbf{N}) \\
& =\mathrm{d} \mathbf{u}^{\top}\left[\begin{array}{ll}
-\partial_{u} \mathbf{x} \cdot \partial_{u} \mathbf{N} & -\partial_{u} \mathbf{x} \cdot \partial_{v} \mathbf{N} \\
-\partial_{v} \mathbf{x} \cdot \partial_{u} \mathbf{N} & -\partial_{v} \mathbf{x} \cdot \partial_{v} \mathbf{N}
\end{array}\right] \mathrm{d} \mathbf{u}
\end{aligned}
$$

Second Fundamental

$$
\begin{aligned}
-\mathbf{T} \cdot \mathbf{N}_{T} & =\mathrm{d} \mathbf{u}^{\top}\left[\begin{array}{ll}
-\partial_{u} \mathbf{x} \cdot \partial_{u} \mathbf{N} & -\partial_{u} \mathbf{x} \cdot \partial_{v} \mathbf{N} \\
-\partial_{v} \mathbf{x} \cdot \partial_{u} \mathbf{N} & -\partial_{v} \mathbf{x} \cdot \partial_{v} \mathbf{N}
\end{array}\right] \mathrm{d} \mathbf{u} \\
& =\mathrm{d} \mathbf{u}^{\top} \mathbf{I I} \mathrm{d} \mathbf{u}
\end{aligned}
$$

Matches definition of curvature for curve defined by cutting surface with the normal-tangent plane, but scaled by the surface metric.

Second Fundamental

$$
\begin{aligned}
\mathbf{I I} & =\left[\begin{array}{cc}
-\partial_{u} \mathbf{x} \cdot \partial_{u} \mathbf{N} & -\partial_{u} \mathbf{x} \cdot \partial_{v} \mathbf{N} \\
-\partial_{v} \mathbf{x} \cdot \partial_{u} \mathbf{N} & -\partial_{v} \mathbf{x} \cdot \partial_{v} \mathbf{N}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\partial_{u u} \mathbf{x} \cdot \mathbf{N} & \partial_{u v} \mathbf{x} \cdot \mathbf{N} \\
\partial_{v u} \mathbf{x} \cdot \mathbf{N} & \partial_{v v} \mathbf{x} \cdot \mathbf{N}
\end{array}\right]
\end{aligned}
$$

Symmetry

- Easy to show second version by expanding normal
- Box product with repeat is zero
- Any change in normal length will be perpendicular to surface
- Permutation of box product does not change results

Osculating Paraboloid

- Tangent plane is linear approximation to surface at a point
- Osculating paraboloid is quadratic approximation to surface at a point
- Matches surface's First and Second Fundamentals at the point
$\mathbf{P}(\mathbf{u})=\mathbf{c}_{0}+\mathbf{c}_{1} u+\mathbf{c}_{2} v+\mathbf{c}_{3} u^{2}+\mathbf{c}_{4} u v+\mathbf{c}_{5} v^{2}$

Nature of Surface

$$
\mathbf{P}(\mathbf{u})=\mathbf{c}_{0}+\mathbf{c}_{1} u+\mathbf{c}_{2} v+\mathbf{c}_{3} u^{2}+\mathbf{c}_{4} u v+\mathbf{c}_{5} v^{2}
$$

Elliptic

Hyperbolic
Parabolic

$$
\mathbf{c}_{3} \mathbf{c}_{4}-\left(\mathbf{c}_{5} / 2\right)^{2}>0 \quad \mathbf{c}_{3} \mathbf{c}_{4}-\left(\mathbf{c}_{5} / 2\right)^{2}<0 \quad \mathbf{c}_{3} \mathbf{c}_{4}-\left(\mathbf{c}_{5} / 2\right)^{2}=0
$$

Includes planar case

Normal Curvature

- Curvature adjusted for surface metric and for velocity in parameter space:

$$
\kappa=\frac{\mathrm{d} \mathbf{u}^{\top} \cdot \mathbf{I I} \cdot \mathrm{d} \mathbf{u}}{\mathrm{~d} \mathbf{u}^{\top} \cdot \mathbf{I} \cdot \mathrm{d} \mathbf{u}}
$$

Normal Curvature

$$
\begin{array}{ll}
\kappa=\frac{\mathrm{d} \mathbf{u}^{\top} \cdot \mathbf{I I} \cdot \mathrm{d} \mathbf{u}}{\mathrm{~d} \mathbf{u}^{\top} \cdot \mathbf{I} \cdot \mathrm{d} \mathbf{u}} & \begin{array}{l}
\text { Recall } \\
\mathbf{I}=\mathbf{R \mathbf { R S } ^ { 2 } \mathbf { R } ^ { \top } = \mathbf { A A } ^ { \top }} \\
\mathrm{d} \mathbf{u}=\mathbf{R}(1 / \mathbf{S}) \mathrm{d} \mathbf{u}^{\prime}=\mathrm{A}^{-\top} \mathrm{d} \mathbf{u}^{\prime}
\end{array} \\
\kappa \mathrm{d} \mathbf{u}^{\top} \cdot \mathbf{I} \cdot \mathrm{d} \mathbf{u}=\mathrm{d} \mathbf{u}^{\top} \cdot \mathbf{I I} \cdot \mathrm{d} \mathbf{u} & \\
\kappa \mathrm{~d} \mathbf{u}^{\prime \top} \cdot \mathbf{A}^{-1} \cdot \mathbf{I} \cdot \mathbf{A}^{-\mathrm{T}} \cdot \mathrm{~d} \mathbf{u}^{\prime}=\mathrm{d} \mathbf{u}^{\top \top} \cdot \mathbf{A}^{-1} \cdot \mathbf{I I} \cdot \mathbf{A}^{-\mathrm{T}} \cdot \mathrm{~d} \mathbf{u}^{\prime} \\
\kappa \mathrm{d} \mathbf{u}^{\prime \top} \cdot \mathrm{d} \mathbf{u}^{\prime}=\mathrm{d} \mathbf{u}^{\prime \top} \cdot \mathbf{A}^{-1} \cdot \mathbf{I I} \cdot \mathbf{A}^{-\mathrm{T}} \cdot \mathrm{~d} \mathbf{u}^{\prime}
\end{array}
$$

$$
\kappa=\frac{\mathrm{d} \mathbf{u}^{\prime \top} \cdot \mathbf{A}^{-1} \cdot \mathbf{I I} \cdot \mathbf{A}^{-\mathrm{T}} \cdot \mathrm{~d} \mathbf{u}^{\prime}}{\left\|\mathrm{d} \mathbf{u}^{\prime}\right\|}
$$

Principal Curvatures

$$
\kappa=\frac{\mathrm{d} \mathbf{u}^{\prime \top} \cdot \mathbf{I I}^{\prime} \cdot \mathrm{d} \mathbf{u}^{\prime}}{\mathbf{I I}} \quad=\mathbf{A}^{-1} \cdot \mathbf{I I} \cdot \mathbf{A}^{-\mathbf{T}}
$$

- Dot product projects away "twisting" curvature
- Eigenvectors are where there is nothing to project away
- Notice that it's a real and symmetric matrix
$\mathbf{I I}^{\prime} \cdot \mathbf{v}=\kappa \mathbf{v}$

Principal Curvatures

$\mathbf{I I}^{\prime} \cdot \mathbf{v}=\kappa \mathbf{v}$

Parabolic
 $\kappa_{1} \kappa_{2}=0$

Includes planar case

Weingarten Operator

$\mathbf{W}=\mathbf{I}^{-1} \cdot \mathbf{I I}$

$$
=\mathbf{A}^{-\boldsymbol{T}} \cdot \mathbf{A}^{-1} \cdot \mathbf{I I}
$$

$$
=\mathbf{A}^{-\top} \cdot \mathbf{A}^{-1} \cdot \mathbf{A} \cdot \mathbf{I I}^{\prime} \cdot \mathbf{A}^{\top}
$$

$$
=\mathbf{A}^{-\top} \cdot \mathbf{I I}^{\prime} \cdot \mathbf{A}^{\top}
$$

If κ and \mathbf{u}^{\prime} are an eigenvalue/vector pair of $\mathbf{I I}^{\prime}$
Then $\mathbf{u}=\mathbf{A}^{-\top} \mathbf{u}^{\prime}$ is an eigenvector of \mathbf{W} with the eigenvalue κ

The eigenvectors are expressed in the original parameterization

Gaussian curvature

- Measure of intrinsic flatness of the surface
- Imagine flat-landers computing π on the surface

$$
K=\kappa_{1} \kappa_{2}=\operatorname{det} \mathbf{W}=\frac{\operatorname{det} \mathbf{I I}}{\operatorname{det} \mathbf{I}}
$$

Mean curvature

- Average curvature of the surface
- Will be zero for minimal surfaces

$$
H=\frac{\kappa_{1}+\kappa_{2}}{2}=\frac{\operatorname{Tr}\left(\mathbf{I} \cdot \mathbf{I I}^{*}\right)}{2 \operatorname{det} \mathbf{I}}
$$

Parabolic Lines

- Curves on surface where Gaussian curvature is zero

Contours

- Surface normal perpendicular to view direction
- Generator curve: $f(u, v)=\left(\partial_{u} \mathbf{S}(u, v) \times \partial_{v} \mathbf{S}(u, v)\right) \cdot \mathbf{v}=0$

Contours

- Surface normal perpendicular to view direction
- Generator curve: $\quad f(u, v)=\left(\partial_{u} \mathbf{S}(u, v) \times \partial_{v} \mathbf{S}(u, v)\right) \cdot \mathbf{v}=0$

Geodesic Curves

- Given a curve, \mathbf{C}, on a surface, \mathbf{S}
- $\mathbf{C}(t)=\mathbf{S}(u(t), v(t))$
- The geodesic curvature is
- $\kappa^{2}=\kappa_{g}^{2}+\kappa_{n}^{2}$
- $\kappa_{n}=\kappa\left(\hat{\mathbf{N}}_{s} \cdot \hat{\mathbf{N}}_{c}\right)$
- Separates curvature into
- What's necessary to stay on surface
- What's wiggling in tangent plane
- Geodesics are curves with $\kappa_{g}=0$
- Generalize straight lines
- Locally shortest path between points
- On a circle they are great arcs

$\mathrm{d}^{2} \mathbf{C} \quad \partial \mathbf{S}$
 $\frac{\mathrm{d} t^{2}}{} \cdot \frac{\mathrm{du}}{\partial u_{i}}=0 \quad \forall i$ ODE for curve

Geodesic Curves

Geodesic Curves

Geodesic Curves

Note integration errors when passing near poles.

Geodesic Curves

Flat w/ bump
Hyperbolic w/ bump

Lines of Curvature

- A line of curvature on a surface is tangent everywhere to one of the principal curvatures
- Except at umbilic points where the two principal curvatures are equal

Need to check: lines of curvature geodesic?

Implicit Surfaces

$$
\{\mathbf{x} \mid f(\mathbf{x})=0\}
$$

$$
\mathbf{N}(\mathrm{x})=\frac{\nabla f}{\|\nabla f\|}
$$

$$
K_{G}=\frac{\boldsymbol{\nabla} f \cdot\left(\boldsymbol{\nabla} \boldsymbol{\nabla}^{\boldsymbol{\top}} f\right)^{*} \cdot \boldsymbol{\nabla} f}{\|\boldsymbol{\nabla} f\|^{4}}
$$

$$
K_{M}=\frac{\boldsymbol{\nabla} f \cdot\left(\boldsymbol{\nabla} \boldsymbol{\nabla}^{\boldsymbol{\top}} f\right) \cdot \boldsymbol{\nabla} f-\|\nabla f\|^{2} \operatorname{Tr}\left(\boldsymbol{\nabla} \boldsymbol{\nabla}^{\boldsymbol{\top}} f\right)}{2\|\boldsymbol{\nabla} f\|^{3}}
$$

$$
\kappa_{1 \mid 2}=K_{M} \pm \sqrt{K_{M}^{2}-K_{G}}
$$

