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Topics

• Vector and Tensor Fields
• Divergence, curl, etc. 

• Parametric Curves
• Tangents, curvature, and etc.

• Parametric Surfaces
• Normals, tangents, curvature, etc.

• Implicit Surfaces
• Normals, curvature, etc.
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Vectors

• A vectors defines a magnitude and direction
• Not just a list of numbers
• Particular numbers are an artifact of the coordinate system we chose

• Not all coordinate systems are orthonormal
• Nearly everything that is useful can be defined w/o coordinate system

• Vectors transform like vectors

• No set location (e.g. no root)
• But may be functions of  location
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v� = A · v

v̂ = v/||v||||v||

v = [vx, vy, vz]

v = v(u)

v = v(x, y)
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Tensors
• Tensors transform like tensors

• Tensors used to define oriented quantities
• Independent of coordinate system
• Specific realization will depend on coordinate system

• Cartesian tensors -- orthonormal coordinate system
• General tensors -- non-orthonormal coordinate system

• Tensors have rank 
• Not related to dimension of space

• Rank 0 → scalars
• Rank 1 → vectors

• Rank 2 → matrices 

• Rank 3 → don’t work well in matrix-vector notation
4

e.g. T� = A · T · AT

T� = A · T · A−1
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• Examples

Tensors
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a · b = aT · b = ||a|| ||b||Cos(∠ab)

a · bT = P (A · a) · (A · b)T =
A · (a · bT) · AT = A · P · AT

⇢
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Note the way inner and otter products behave...

R = x� · xT + y� · yT + z� · zT
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• Notation due to Einstein
• Makes life much easier
• Takes a while to get used to
• Useful in other contexts as well

• Free index 
• Appears on both sides 
• Unique in each term
• Implied “for all”

• Dummy index
• Appears exactly twice in each term
• Implied “sum over”

• Different for general tensors

Summation Notation
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a −→ ai A −→ Aij

c = A · b −→ ci = Aijbj

A� = RART −→ A�
ij = AklRikRjl

s = a · b −→ s = aibi

A = a · bT −→ Aij = aibj

cT = bT · AT −→ ci = bjAij

c = A · b −→ ci = bjAij
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• Two special symbols
• Delta
• Permutation

Summation Notation
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δij

δij =
�

1 if i = j
0 if i �= j

εijk

εijk =






1 if i, j, k are even permutation of 1, 2, 3
−1 if i, j, k are odd permutation of 1, 2, 3
0 else

εij =






1 if i, j are 1, 2
−1 if i, j are 2, 1
0 else

If you’re slumming in �2

aiδij = aj

εkijεkab = δiaδjb − δibδja
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Scalar Fields
• Scalar as function of some spatial variable(s)

• e.g.: 

8Density Plot Height-field Plot

f(x, y) = f(x) = Sin(x)Sin(y)
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Vector Fields
• Vector as function of some spatial variable(s)

• e.g.: 

9

v(x, y) = v(x) = [Sin(x),Cos(y)]

v(x, y) = v(x) = [1,Sin(y), 0]
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Differential Operators on Fields

• Derivatives of field w.r.t. spatial coordinates
• Coordinates implicit given field parameterization
• Linear operators on the field
• Not tied to any particular coordinate system

• Basic operators
• Gradient
• Divergence
• Curl
• Laplacian

• All expressed with      (a.k.a. Nabla or del)

10

∇ = [
∂

∂x
,

∂

∂y
,

∂

∂z
]

∇i = ∂i =
∂

∂xi

∇

∇ =
�

i

ei
∂

∂xi
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Gradient
• Often applied to scalar fields

• Gives direction of steepest accent

• Also has meaning for higher rank fields

• Elevates rank by one
• e.g. velocity gradient of a Newtonian fluid gives the strain rate

11

gradf(x) = ∇f(x) =
�
∂f(x)
∂x1

,
∂f(x)
∂x2

,
∂f(x)
∂x3

,

�

f(x) = x2 + y2

∇f(x) = [2x, 2y]
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Divergence
• For a vector field it describes the net expansion or contraction

• Lowers rank by one

• Divergence of vector field is a scalar
• An inner product of derivatives with the field

12
∇ · [Sin(x),Cos(y)] = −Cos(x) + Sin(y)

divv(x) = ∇ · v(x) = ∇T · v(x) =
∂vx(x)

∂x1
+

∂vy(x)
∂x2

+
∂vz(x)

∂x3
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Curl
• For a vector field it describes the net “rotation”

• Cross product of derivatives with the field

• Scaler in 2D, vector in 3D

13

curlv(x) = ∇× v(x)

∇× [Cos(y), 0] = −Sin(y)
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Laplacian
• Divergence of Gradient

• Scalar second derivative operator
• Difference between a point and its surround

• Often used for smoothing of some sort

14

∇ · ∇ = ∇2 =
∂2

∂xx
+

∂2

∂yy
+

∂2

∂zz

cos2(x) sin2(y) 2 cos2(x) cos2(y)− 4 cos2(x) sin2(y) + 2 sin2(x) sin2(y)
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Notation Examples

15

v(x) = ∇f(x) −→ vi = ∂if

s(x) = ∇ · v(x) −→ s = ∂ivi

c(x) = ∇× v(x) −→ ci = εijk∂jvk

a(x) = (v(x) · ∇)b(x) −→ ai = vj∂jbi
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Fun Facts

• Helmholtz-Hodge decomposition
• Smooth, differentiable vector field 

16

a = ∇s + ∇× v + h

∇s

∇× v
h

solenoidal or divergence-free part
irrotational or curl-free part

harmonic part

∇ · (∇× v) = 0
Both are obvious in tensor notation

Scalar and vector potentials

∇× (∇s) = 0
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Directional Derivative

17

df

dx
= x · ∇f

Add a picture or something...
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• Curve is a geometric entity
• Set of points in space
• In neighborhood of any point it is isomorphic to a line

• Generator function: 
• A vector valued function (careful with “vector”)
• A scalar function for each dimension of embedding space

• A particular parameterization is arbitrary and not unique
• Parameterization is not intrinsic

Parametric Curves

18
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2u

u2 + 1
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1− u2

u2 + 1

�

x = x(t)
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Derivatives
• Given function for curve we can take derivatives w.r.t. the 

parameter:

• The derivatives have names based on physical analogs
• Velocity
• Acceleration
• Jerk
• Snap, Crackle, and Pop

• Speed is the magnitude of velocity

• All are dependent on parameterization and not intrinsic

• Note that, e.g., velocity is a vector field on 
19

ẋ =
dx
dt

s = ||ẋ||

t
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Arclength
• Let

•        is the arclength of the curve 

• The arclength reparameterization of the curve is 

• The arclength parameterization is unique up to sign change 
and translation

•                                            and 

20

s = A(t) =
� t

0
||x(τ)|| dτ

A(t)

x̂(s) = x(A−1(s))

dx̂(s)
ds

=
dx(t)

dt

����

����
dx(t)

dt

����

����
−1 ����

����
dx̂(s)

ds

����

���� = 1

Closed form arclength parameterization may be hard to find.
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Tangent Vector

• Tangent vector is a geometric property of the curve
• Does not depend on parameterization
• Tangent may exist where velocity is zero or may be undefined

21

T =
dx̂(s)

ds
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Curvature and Normal

22

T · T = 1
(T · T)� = (1)�

T · T� = 0

Note:

T ⊥ T�Therefore:

We can write: T� = κN

Curvature of the curve at
this point

Normal of the curve at
this point

Taylor expansion implies that if curvature is zero 
curve must be locally a straight line.
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Frenet Frame
• Define binormal by

• Gives us orthonormal coordinate frame: Frenet Frame
• Moves along curve
• Give local frame of reference 

23

B = T×N

T
N
B

Not defined at inflection 
points where there is no 
curvature...
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Frenet Frame

• Osculating Plane
• Defined by N and T
• Locally contains the curve

• Normal Plane
• Defined by N and B
• Locally perpendicular to the curve

24

Image from Wikipedia 

Monday, October 26, 2009



Torsion

25

B · B = 1 → B · B� = 0

B · T = 0 → B� · T + B · T� = 0
→ B� · T = −B · T� = −B.κN = 0

B� ⊥ B and B� ⊥ T

B� = −τNChange in binormal is then 

Torsion

The minus sign is to make positive torsion CCW w.r.t  tangent.

If torsion is zero, we have a planar curve.
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N� ⊥ N→ N� = αT + βB

Evolution of Frenet Frame

26

Recall it’s an orthonormal basis.

Differentiate                andN · T = 0 N · B = 0
N� · T = −N · κN = −κ
N� · B = −N · (−τ)N = τ

Yields 

N� = −κT + τBTherefore 
We know                 and   T� = κN B� = −τB

α = N� · T
β = N� · B
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Evolution of Frenet Frame

27

N� = −κT + τB

T� = κN 


T�

N�

B�



 =




0 κ 0
−κ 0 τ
0 −τ 0



 ·




T
N
B





ODE for evolution of Frenet Frame

Given starting point, if you know curvature and 
torsion, then you can build curve.

(Need “speed” also if not arclength parameterized.)

Discrete analogy: stacking up macaroni  

B� = −τN
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Radius of Curvature

28

r

x̂(s) = [r cos
�s

r

�
, r sin

�s

r

�
]

||x̂�|| = 1Note that 

T� = [−1
r

cos
�s

r

�
,−1

r
sin

�s

r

�
]

T = [− sin
�s

r

�
, cos

�s

r

�
]

κ = ||T�|| =
1
r

Curvature is inverse of radius of curvature.
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Some Formulae 
• For arclength parameterized curve

29

• For arbitrarily parameterized curve 

κ = ||x̂(s)��||

τ =
x̂� · (x̂�� × x̂���)

||x̂��||2

κ =
||x�(t)× x��(t)||

||x�(t)||3

τ =
x�(t)× x��(t) · x���(t)

||x�(t)× x��(t)||2
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Field Evaluated Along a Curve

• Curve defined in some space
•  

• Function on embedding space of curve
•  

• Composition function
•  

•  

30

f(x)

x(t)

f(x(t))

df

dt
= ∇f · dx

dt
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Parametric Surfaces

• Surface is a geometric entity
• Set of points in space
• In neighborhood of any point it is isomorphic to a plane

• Generator function: 
• A vector valued function (careful with “vector”)
• A scalar function for each dimension of embedding space
• Dimension of parameter is two

• A particular parameterization is arbitrary and not unique
• Parameterization is not intrinsic

31

x(u)
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• Given function for curve we can take derivatives w.r.t. the 
parameter:

• All are dependent on parameterization and not intrinsic

• Note that each one is a vector field on 

• Examples of degeneracies

Derivatives 

32

∂x(u)
∂u

∂x(u)
∂v

u

[v3, u,−v5] [v(u + 1), u(1− v), 0][v3, u, v2]
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Tangent Space
• The tangent space at a point on a surface is the vector 

space spanned by

• Definition assumes that these directional derivatives are linearly 
independent.

• Tangent space of surface may exist even if the 

parameterization is bad

• For surface the space is a plane
• Generalized to higher dimension manifolds

33

∂x(u)
∂u

∂x(u)
∂v
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Non Orthogonal Tangents

34




cos(θ2π) cos(φpi/2)
sin(θ2π) cos(φπ/2)

sin(φπ/2)








cos(2πθ) cos

�
1
2π

�
1
2 (1− |φ|) cos(6πθ)φ + φ

��

cos
�

1
2π

�
1
2 (1− |φ|) cos(6πθ)φ + φ

��
sin(2πθ)

sin
�

1
2π

�
1
2 (1− |φ|) cos(6πθ)φ + φ

��





θ ∈ [0..1] φ ∈ [−1..1]
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Normals
• The normal at a point is the unit vector perpendicular to 

the tangent space

•  

• The normal direction is determined
• Up to a sign change
• Relative to surface

35

N =
∂ux× ∂vx

||∂ux× ∂vx||
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First Fundamental

36

du = [du, dv]

dx =
∂x
∂u

du +
∂x
∂v

dv

dx = du · ∇x(u)

dx · dx = duT · I · du

I =
�

∂ux · ∂ux ∂vx · ∂ux
∂ux · ∂vx ∂vx · ∂vx

�
Iij = (∂ixk)(∂jxk)

Pick a direction in parametric space: 

Corresponding direction in the
tangent plane:

For unit speed in parametric space, the sped in the 
embedding space is 

s2 = dx · dx = duT · (∇x) · (∇x)T · du
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First Fundamental

37

I =
�

∂ux · ∂ux ∂vx · ∂ux
∂ux · ∂vx ∂vx · ∂vx

�
Iij = (∂ixk)(∂jxk)

• Encodes distance metric on the surface

• If tangents are orthonormal it reduces to identity

• Used as metric by Green’s Strain

• Invariant w.r.t. translations and rotations of surface:

x�
i = Rijxj

(∂ix
�
k)(∂jx

�
k) = (∂iRkpxp)(∂jRkqxq)

= RkpRkq(∂ixp)(∂jxq)
= δpq(∂ixp)(∂jxq)
= (∂ixp)(∂jxp)

e.g.
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First Fundamental

38

I =
�

∂ux · ∂ux ∂vx · ∂ux
∂ux · ∂vx ∂vx · ∂vx

�
Iij = (∂ixk)(∂jxk)

• Transforms like a tensor in parameter space:

u�
i = Rijuj −→ ui = Rjiu

�
j

∂xk

∂u�
i

∂xk

∂u�
j

=
∂xk

∂up

∂up

∂u�
i

∂xk

∂uq

∂uq

∂u�
j

= Rip
∂xk

∂up

∂xk

∂uq
Rjq

I �
ij = Rip Ipq Rjq

Assume orthonormal transform...
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Arclength Over Surface

39

u, v

x, y, z

c(t) = x(u(t))

l =
� b

a

����

����
dc(t)
dt

����

���� dt

=
� b

a

�
||dx||2dt

=
� b

a

√
dx · dx dt

=
� b

a

√
duT · I · du dt
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Principle Tangents

40

u, vx, y, z

Bottom row is eigenvectors of    I
Not intrinsic features of the surface!
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Principle Tangents

41
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du�T · I� · du� = du�T · (1/S) · RT ·
�
R · S2 · RT

�
· R · (1/S) · du�

= du�T ·
�
(1/S) · RT · R · S2 · RT · R · (1/S)·

�
du�

Orthonormal Parameterization

42

Eigen decomposition of Fist Fundamental

Define coordinate transform by

In transformed parameterization    is the identity.I

Similar to definition of arclength reparameterization.

I = RS2RT = AAT

du� = SRTdu = ATdu
du = R(1/S)du� = A−Tdu�
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Second Fundamental

43

Let      be some tangent direction dx = du · ∇x(u)dx

The directional derivative of the normal is

The normal is unit length so it is perpendicular to its 
derivative.

∇uN =
∂N
∂u

du +
∂N
∂v

dv

N

dx

dN
N dx

dN

As shown in top-down view,  the three 
vectors may not be co-planar.

Surface may tilt to side as point moves.
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Second Fundamental

44

Let      be some tangent direction dx = du · ∇x(u)dx

The directional derivative of the normal is

∇uN =
∂N
∂u

du +
∂N
∂v

dv

The change in normal restricted to the plane 
containing the tangent and normal is given by

−T · NT = −dx · ∇u N
= −(du · ∇x) · (du · ∇N)

= duT

�
−∂ux · ∂uN −∂ux · ∂vN
−∂vx · ∂uN −∂vx · ∂vN

�
du

N dx

dN
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Second Fundamental

45

−T · NT = duT

�
−∂ux · ∂uN −∂ux · ∂vN
−∂vx · ∂uN −∂vx · ∂vN

�
du

= duT II du

Matches definition of curvature for curve defined by 
cutting surface with the normal-tangent plane, but 
scaled by the surface metric.

dx dx

NN
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Second Fundamental

46

II =
�
−∂ux · ∂uN −∂ux · ∂vN
−∂vx · ∂uN −∂vx · ∂vN

�

=
�

∂uux · N ∂uvx · N
∂vux · N ∂vvx · N

�

Symmetry 

• Easy to show second version by expanding normal
• Box product with repeat is zero
• Any change in normal length will be perpendicular to surface
• Permutation of box product does not change results
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Osculating Paraboloid
• Tangent plane is linear approximation to surface at a point

• Osculating paraboloid is quadratic approximation to 
surface at a point
• Matches surface’s First and Second Fundamentals

at the point

47

P(u) = c0 + c1u + c2v + c3u
2 + c4uv + c5v

2
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Nature of Surface

48

P(u) = c0 + c1u + c2v + c3u
2 + c4uv + c5v

2

ParabolicHyperbolicElliptic

c3c4 − (c5/2)2 > 0 c3c4 − (c5/2)2 < 0 c3c4 − (c5/2)2 = 0

Includes planar case
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Normal Curvature
• Curvature adjusted for surface metric and for velocity in 

parameter space:

49

κ =
duT · II · du
duT · I · du
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Normal Curvature

50

κ =
duT · II · du
duT · I · du

κ duT · I · du = duT · II · du

I = RS2RT = AAT

du = R(1/S)du� = A−Tdu�

Recall

κ du�T · A−1 · I · A−T · du� = du�T · A−1 · II · A−T · du�

κ du�T · du� = du�T · A−1 · II · A−T · du�

κ =
du�T · A−1 · II · A−T · du�

||du�||
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Principal Curvatures

51

II� · v = κv

II� = A−1 · II · A−T
κ =

du�T · II� · du�

||du�||

• Dot product projects away “twisting” curvature

• Eigenvectors are where there is nothing to project away
• Notice that it’s a real and symmetric matrix
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Principal Curvatures
II� · v = κv

ParabolicHyperbolicElliptic

Includes planar case

κ1κ2 > 0 κ1κ2 < 0 κ1κ2 = 0
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Weingarten Operator

53

W = I−1 · II
= A−T · A−1 · II
= A−T · A−1 · A · II� · AT

= A−T · II� · AT

κ u� II�If     and      are an eigenvalue/vector pair of       

u = A−Tu� WThen                 is an eigenvector of       with the 
eigenvalue κ

The eigenvectors are expressed in the original 
parameterization

Monday, October 26, 2009



Gaussian curvature

• Measure of intrinsic flatness of the surface

• Imagine flat-landers computing π on the surface

54

K = κ1 κ2 = detW =
det II
det I
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Mean curvature

• Average curvature of the surface
• Will be zero for minimal surfaces

55

H =
κ1 + κ2

2
=

Tr (I · II∗)
2 det I
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Parabolic Lines

• Curves on surface where Gaussian curvature is zero

56
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Contours
• Surface normal perpendicular to view direction

• Generator curve: 

57

f(u, v) = (∂uS(u, v)× ∂vS(u, v)).v = 0
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Contours

58

• Surface normal perpendicular to view direction
• Generator curve: f(u, v) = (∂uS(u, v)× ∂vS(u, v)).v = 0
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Geodesic Curves
• Given a curve,     , on a surface,      

•  

• The geodesic curvature is
•  
•  

• Separates curvature into
• What’s necessary to stay on surface
• What’s wiggling in tangent plane  

• Geodesics are curves with
• Generalize straight lines
• Locally shortest path between points
• On a circle they are great arcs

59

C(t) = S(u(t), v(t))
C S

κ2 = κ2
g + κ2

n

κn = κ(N̂s · N̂c)

κg = 0

d2C
dt2

· ∂S
∂ui

= 0 ∀i

ODE for curve

üq = (I−1)qp
∂Sk

∂up

∂2Sk

∂ui∂uj
u̇iu̇j
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Geodesic Curves

60
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Geodesic Curves

61
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Geodesic Curves

62

Note integration errors 
when passing near poles.
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Geodesic Curves

63

Flat w/ bump Hyperbolic w/ bump
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Lines of Curvature
• A line of curvature on a surface is tangent everywhere to 

one of the principal curvatures
• Except at umbilic points where the two principal curvatures are equal

64

Need to check: lines of curvature geodesic?
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Implicit Surfaces

65

{x|f(x) = 0}

N(x) =
∇f

||∇f ||

KG =
∇f · (∇∇Tf)∗ · ∇f

||∇f ||4

κ1|2 = KM ±
�

K2
M −KG

KM =
∇f · (∇∇Tf) · ∇f − ||∇f ||2Tr(∇∇Tf)

2||∇f ||3

See 2005 paper by Ron Goldman
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