CS61A SUMMER 2010
FINAL REVIEW SESSION 1

George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng
Derived from the notes of Chung Wu and Justin Chen,
and past CS61A review sessions (Spring 2007)

QUESTION 1.

We want to replace the root of a tree by shifting certain children up by
one level successively and putting the original root at the end of the
shifting. Write a procedure demote-root that takes a tree and a list of
children index numbers as arguments and returns a new tree that has the
children at those indices successively moved up by 1, with the root taking
the original position of the last child.

For example, if we have the tree:

3 root
/ |\
1 2 4 level 1
/ |\
56 7 level 2

and the list (0 2), we would move the element in the 0Oth index in level 1
up by one (so the number 1) and the element in the 2nd index in level 2 up
by one (so the number 7) and have the root (the number 3) replace the
original position of the 7, giving us:

1 root
/ |\
7 2 4 level 1
/ |\
56 3 level 2

Remember to return a NEW tree!

QUESTION 2.

What will Scheme print? If an expression produces an error message,

simply write “error”; if the value of an expression is a procedure, simple

write “procedure”.

(keep (lambda (x) x)
(every (lambda (y) (if (even? y) #t y))
‘(1337)))

(and or (not #f) (not not) 2)

QUESTION 3.
What will Scheme print in response to the following expressions? If an
expression produces an error message, simply write “error”. Also, draw a

box and pointer diagram for the value produced by each expression.

(cons (list 1 3) (append (list (cons 2 3)) (list 4)))

(list (append (list 3) (cons 4 “())))

(let ((x (list 1 2 3 4)))
(set-car! (cddr x) x)
X)

(let ((x (list 1 2 3)))
(set-car! x (cdr x))
(set-cdr! (car x) 5)
X)

(let ((x (list 1 2 3)))
(set-car! x (list ’'a 'b ’'c))
(set-car! (cdar x) ’'d)

X)

QUESTION 4.

(define (square x) (* x X))
(define (foo x y) (+ x (* Yy V)))
(foo (* 2 2) (square 3))

How many times is * called in:

Normal order

QUESTION 5.

Applicative order

What is the order of growth in time of the following procedure foo, in
terms of its argument value n? Also, does it generate an iterative process

or recursive process?

(define (foo n)
(1if (even? n)
(mystery n)
(mystery (+ n 1))))

(define (mystery x)
(if ((x < 1) 1)
((even? x) (+ 1 (mystery (
(mystery (
(else (+ 1 (mystery (- x 2

0(1) 0(n)

- x 1))

- X 2))))
))))))

0 (n?) 0(27)

QUESTION 6.

Write sent-fn, a procedure that takes an arithmetic function and a list of
sentences of numbers and returns a new list of sentences that is the
result of calling the function each number in each sentence. For example:

> (sent-fn square ‘((2 5) (3 1 6)))
((4 25) (91 36))

Use higher order functions, not recursion, and respect all relevant data
abstractions!

QUESTION 7.

Sometimes when we see lots of parentheses around a single variable, we get
confused as to what it’s supposed to be doing:

(C((£))) 1 3)

Write a procedure make-nested that takes a number parens and a procedure
end-with and returns a procedure that, when called with parens number of
nested parentheses, will invoke end-with after removing itself from the
nested parentheses. For the example above, we would use:

(define f (make-nested 3 +))

which would cause ((((f))) 1 3) to return 4 because there are three nested
parens directly around f, and then + is called on 1 and 3.

QUESTION 8.

Here is a class set-of-numbers that represents a mutable set of numbers (a

set has no duplicates). We would like to implement three methods for this
set of numbers:

add — adds a number into the set.
Recall that a set should never have duplicates.
remove — removes a number from the set.
Has no effect if the set doesn't contain the target number.
remove-all — takes another set-of-numbers as an argument and removes
all the numbers that appear in the other set of numbers
from the current set. The other set is unchanged.

The return values of these methods are unimportant.
(define-class set-of-numbers

(instance-vars (nums '()))
;; finish the implementation here

QUESTION 9.

Write a predicate procedure deep-car? that takes a symbol and a deep-list
(possibly including sublists to any depth) as its arguments. It should
return true if and only if the symbol is the car of the list or of some
list that’s an element, or an element of an element, etc.

> (deep-car? ’'a ’'(a b c¢))

#t

> (deep-car? ’'a (b (c a) a d))

#£f

> (deep-car? 'a ((xy) (z (a b) c) d))
#t

QUESTION 10. (Environment Diagrams)

1. (define (kons a b)
(lambda (m)
(if (eg? m ’'kar) a b)))

(define p (kons (kons 1 2) 3))

2. (define x 3)

(define y 4)

(define foo
((lambda (x) (lambda (y) (+ x y)))

(+ xYy)))
(foo 10)

3. (define x 17)
(define £
(let ((x 4))
(lambda (y)
(print x)
(set! x vy)
Y)))

QUESTION 11.

(Question 2 of MT3, Spring 1996)

Write list-rotate! which takes two arguments, a nonnegative integer n and
a list seqg. It returns a mutated version of the argument list, in which
the first n elements are moved to the end of the list, like this:

> (list-rotate! 3 (list 'a 'b 'c 'd 'e 'f 'qg))
(d e f gaboc)

You may assume that 0 = n < (length seq) without error checking.

Note: Do not allocate any new pairs in your solution. Rearrange the
existing pairs.

QUESTION 12.

Consider foo, a popular name for mystery functions.

(define foo

(let ((L (list 1)))
(lambda (a) (let ((M (cons a L)))
(lambda (b) (set! L (cons (+ a 1) L))

(set! a (+ a 2))
(set-car! (cdr M) (+ 3 (cadr M)))
(set! b (+ b 4))
(list a b L. M))))))

Fill in the blanks below :

> (define £ (foo 1))

> (f 2)

> (define g (foo 2))
(g 1)

\

> (£ 2)

> (g 1)

QUESTION 13. (Metacircular Evaluator)
1. Recall that mceval.scm tests true or false using the true? and false?
procedure:

(define (true? x) (not (eq? x false)))
(define (false? x) (eq? x false))

Suppose we type the following definition into MCE:
MCE> (define true false)
What would be returned by the following expression:

MCE> (if (= 2 2) 3 4)

2. Alyssa P. Hacker has noticed that many 61A students lose points by
leaving out the empty frames that you get from invoking a procedure with
no arguments. She asks all her friends how she can teach the students
better so they won't make this mistake.

Ben Bitdiddle says, “Instead of teaching the students better, let's just
modify the metacircular evaluator so that it doesn't create frames that
would be empty. Then the students will be right.” Modify the metacircular
evaluator to implement Ben's suggestion.

(a) Is this primarily a change to eval or to apply?

(b) What specific procedure(s) will you change?

(c) Make the changes on the next page.

(d) Lem E. Tweakit notices that this change is not such a great idea. He
thinks the modified metacircular evaluator will interpret certain Scheme
programs incorrectly. Under what circumstances would this modification to
the evaluator change the meaning of Scheme programs run using the
metacircular evaluator? (That is, what kind of program will produce
different results using the modified version than using the original one?)

(define (mc-eval exp env)
(cond ((self-evaluating? exp) exp)
((variable? exp) (lookup-variable-value exp env))
((quoted? exp) (text-of-quotation exp))
((assignment? exp) (eval-assignment exp env))
((definition? exp) (eval-definition exp env))
((if? exp) (eval-if exp env))
((lambda? exp) (make-procedure (lambda-parameters exp) (lambda-body exp)
env))
((begin? exp) (eval-sequence (begin-actions exp) env))
((cond? exp) (mc-eval (cond->if exp) env))
((application? exp) (mc-apply (mc-eval (operator exp) env)
(list-of-values (operands exp) env)))
(else
(error "Unknown expression type -- EVAL" exp))))

(define (mc-apply procedure arguments)
(cond ((primitive-procedure? procedure)
(apply-primitive-procedure procedure arguments))
((compound-procedure? procedure)
(eval-sequence (procedure-body procedure)
(extend-environment
(procedure-parameters procedure)

arguments
(procedure-environment procedure))))
(else (error "Unknown procedure type -- APPLY" procedure))))

(define (list-of-values exps env)
(if (no-operands? exps)
"()
(cons (mc-eval (first-operand exps) env)
(list-of-values (rest-operands exps) env))))

(define (extend-environment vars vals base-env)
(if (= (length vars) (length vals))
(cons (make-frame vars vals) base-env)
(if (< (length vars) (length wvals))
(error "Too many arguments supplied" vars vals)
(error "Too few arguments supplied" vars vals))))

(define (make-frame variables wvalues)
(cons variables values))

10

