
CS61A: Structure and Interpretation of Computer Programs George Wang

CS61A Summer 2010

Homework 1

Due: June 28, 2010 at 7am

Note: The number of stars (F) besides a question represents the estimated difficulty of the problem: the
more the number of stars, the harder the question.

1 How to Start and Submit

First, download http://inst.eecs.berkeley.edu/~cs61a/su10/hw/hw1.scm and use it as a template
while filling out your procedures.

See http://www-inst.eecs.berkeley.edu/~cs61a/su10/hw-faq.pdf for submission instructions.

2 Case Study: Calculator

Ever wonder how your calculator works? Well, for your first homework, you will develop an approximation
of a simple computer. To get you started, we have provided a framework that interprets the input and
is capable of doing addition and subtraction, available as part of the skeleton file. You will augment this
framework with other basic operations. Read the information at the top of the file to determine how to run
the calculator.

For simplicity, your program does not have to take into account negative numbers.

1. (F) Fill in the multiply procedure, without using the * primitive. The calculator’s version of mul-
tiplication takes in two numbers and outputs a single number. For example, typing (* 3 4) in the
calculator (which calls your multiply function) returns 3 × 4. Hint: Think about multiplication as
iterated addition. For instance, 4× 1 = 4, while 4× 3 = 4 + (4× 2) = 4 + 4 + (4× 1), and so on.

2. (F) Fill in the exponentiate procedure, without using any primitives. The calculator’s version of
exponentiation takes in two numbers, a base and a power. It returns a single number: the base raised
to the power. For example, typing (^ 3 4) in the calculator (which calls your exponentiate function)
returns 34. Hint: The implementation is analogous to the multiplication procedure, but you will instead
use multiplication iteratively.

3. (FF) Now, fill in the divide procedure. This procedure takes in two numbers—the divisor and the
dividend—and returns a sentence of the quotient and the remainder. For example, typing (/ 7 3) in
the calculator (which calls your divide function) returns the sentence (2 1). Do not use the primitive
/ in your procedure. Hint: Think of division as iterated subtraction. However, you want to think
about how to avoid negative and return a positive remainder instead.

4. (FFF) Fast Multiplication. The grade-school method of multiplication of long numbers works fine
for relatively small multiplications. However, when we need to multiply thousand-digit numbers by
other thousand-digit numbers, it turns out that there are faster ways to multiply, such as the Karatsuba
algorithm. (To quantify exactly how much faster, we will have to wait until week 2).

Learn the Karatsuba algorithm and implement it in the file provided, in the karatsuba function. To
test it in your calculator, use ** instead of *. You may assume the numbers have the same number of
digits and that the number of digits is a power of 2.

Hint: Useful resources are available at Wikipedia (http://en.wikipedia.org/wiki/Karatsuba_algorithm)
and at Wolfram MathWorld (http://mathworld.wolfram.com/KaratsubaMultiplication.html).

Homework 1 Page 1

http://inst.eecs.berkeley.edu/~cs61a/su10/hw/hw1.scm
http://www-inst.eecs.berkeley.edu/~cs61a/su10/hw-faq.pdf
http://en.wikipedia.org/wiki/Karatsuba_algorithm
http://mathworld.wolfram.com/KaratsubaMultiplication.html

CS61A: Structure and Interpretation of Computer Programs George Wang

3 Recursion

1. (F) Write a procedure squares that takes a sentence of numbers as its argument and returns a sentence
of the squares of the numbers:

> (squares ’(2 3 4 5))
(4 9 16 25)

2. (F) Write a procedure switch that takes a sentence as its argument and returns a sentence in which
every instance of the words I or me is replaced by you, while every instance of you is replaced by me,
except at the beginning of the sentence, where it is replaced by I. (Don’t worry about capitalization
of letters.) For example:

> (switch ’(You told me that I should wake you up))
(i told you that you should wake me up)

3. You are writing Solitaire for Windows 7 and you decide to represent the win/loss record by a sentence
of just the word w for win and l for loss.

(a) (F) First, write a procedure first-streak that takes a sentence representing the win/loss record
and finds the length of the first streak, be it a winning or a losing streak. For example:

> (first-streak ’(w w l l l))
2

> (first-streak ’(l w l w w w))
1

(b) (FF) Now, using the first-streak procedure, write a new procedure best-streak that takes
a sentence of win/loss record and returns the length of the longest streak, be it a winning or a
losing streak. For example:

> (best-streak ’(w w l l l))
3

> (best-streak ’(l w l w w w))
3

Hint: The key observation you need to make is that the longest streak is either the first streak,
or the longest streak in the record if you don’t count the first game.

4 Higher Order Functions

1. (FF) You wrote procedures squares and switch, and saw pigl-sent, that pigled each word in its
argument sentence. Generalize this pattern to create a higher-order procedure every that applies an
arbitrary procedure, given as an argument, to each word of an argument sentence. This procedure is
used as follows:

> (every square ’(1 2 3 4))
(1 4 9 16)

> (every first ’(nowhere man))
(n m)

2. (FF) Write repeated, a higher order function that takes in two arguments: a procedure and a
number. It outputs another procedure that composes the given procedure as many times as specified.
For example:

Homework 1 Page 2

CS61A: Structure and Interpretation of Computer Programs George Wang

> ((repeated 1+ 7) 0)
7

> ((repeated butfirst 2) ’(the rain in spain))
(in spain)

3. A common problem in computer science is to sort a collection of data. Although you will be learning
more about this in CS61B, this problem will introduce you to the basics.

(a) (FF) Write a procedure insert that takes a number and a sentence of numbers sorted in in-
creasing order. insert should place the input number in the appropriate position in the sorted
input sentence and output the resulting sentence. For example:

> (insert 3 ’(1 2 3 4 5))
(1 2 3 3 4 5)

(b) (FF) Use insert to write a procedure insertion-sort that takes a sentence of numbers and
sorts them in increasing order. For example:

> (insertion-sort ’(3 1 4 1 5))
(1 1 3 4 5)

Hint: You may find it helpful to keep track of two sentences: a sentence containing numbers not
yet sorted, and a sentence containing numbers that have already been sorted. The analogous
real-world problem is sorting a pile of test papers in alphabetical order.

(c) (FF) Sometimes we would like to sort words in dictionary order; sometimes we would like to
sort numbers where all odd numbers come before the even numbers. Generalize the program to
accept any ordering by defining a procedure insertion-sort-general that takes a sentence and
a comparator function. The comparator function will take two arguments and output #t if the
first argument is larger and #f if the second argument is larger or if the two arguments are equal.
For example:

> (define (odd-first num1 num2)
(cond ((and (even? num1) (even? num2)) (> num1 num2))

((and (even? num1) (odd? num2)) #t)
((and (odd? num1) (even? num2)) #f)
(else (> num1 num2))))

> (insertion-sort-general ’(3 1 4 1 5 2) odd-first)
(1 1 3 5 2 4)

Here, the comparator function odd-first imposes a new ordering on the set of numbers where
the even numbers are always bigger than the odd numbers.

5 Feedback

Now that you’re done, please leave me some feedback at the following link regarding how the course is going.
This is not worth points, but will give me valuable feedback which in turn improves your course experience.
Thanks! https://spreadsheets.google.com/embeddedform?formkey=dEo3T3NaYVJMaTFCTFVmeDhKakZfQnc6MQ

Homework 1 Page 3

https://spreadsheets.google.com/embeddedform?formkey=dEo3T3NaYVJMaTFCTFVmeDhKakZfQnc6MQ

	How to Start and Submit
	Case Study: Calculator
	Recursion
	Higher Order Functions
	Feedback

