
CS61A: Structure and Interpretation of Computer Programs Homework 2

CS61A Summer 2010
George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng

Homework 2

Due: Tuesday, July 6 2010, at 7AM

Note: The number of stars (F) besides a question represents the estimated difficulty of the problem: the
more the number of stars, the harder the question.

1 How to Start and Submit

First, download http://inst.eecs.berkeley.edu/~cs61a/su10/hw/hw2.scm and use it as a template
while filling out your procedures. See http://www-inst.eecs.berkeley.edu/~cs61a/su10/hw-faq.pdf
for submission instructions.

2 Big-Theta: What is the Runtime?

We strongly recommend you do this section individually. This is because analyzing the runtime of
a procedure yourself may be challenging, but if somebody tells you the solutions, you will have a very easy
time convincing yourself that it is correct. We want you to make sure you are able to derive the answers on
your own, and the easiest way you can be assured of that is to do this individually.

For the following pieces of code, please give a big-Theta runtime in terms of n, where n is the input to each
function. When we talk about runtimes, we are primarily concerned with the number of recursive calls. This
is because the number of operations is almost always going to be some constant multiple of the number of
recursive calls. Remember that if a procedure calls a helper procedure, take the time that it takes to call
that helper function into account.

Note, the return value is not what we are concerned with here. In other words, it does not matter what the
procedure does; for this exercise, determine how long the procedure takes.

Page 1

http://inst.eecs.berkeley.edu/~cs61a/su10/hw/hw2.scm
http://www-inst.eecs.berkeley.edu/~cs61a/su10/hw-faq.pdf


CS61A: Structure and Interpretation of Computer Programs Homework 2

1. (F)

(define (one n) n)

2. (F)

(define (foo n)
(if (= n 0)

0
(foo (- n 1))))

3. (FF)

(define (bar n)
(if (or (> n 10) (< n 0))

n
(bar (+ n 1))))

4. (FF)

(define (mystery n)
(cond ((< n 0) 0)

((odd? n) (+ 2 (mystery (- n 2))))
(else (+ 1 (mystery (- n 1))))))

5. (FF)

(define (foofoo n)
(if (= n 0)

0
(+ (foo n) ; defined as above

(foofoo (- n 1)))))

6. (F)

(define (baz n)
(define (bar a b)

(if (>= b a)
0
(bar (/ a 2) b)))

(bar n 1))

7. (FF)

(define (foobaz n)
(if (= n 0)

0
(+ (baz n) ; defined as above

(foobaz (- n 1)))))

3 Lists

1. (F) Write a procedure insert-front, which adds an element to the front of a list. It should take two
arguments: the element to be added, and the list to add the element to. This should be easy.

For example:

> (insert-front ’4 ’(2 4 2 1))
(4 2 4 2 1)

Page 2



CS61A: Structure and Interpretation of Computer Programs Homework 2

2. (FF) Now, code insert-back, which inserts an element to the back of a list. It should take the
same arguments that insert-front does. Notice how much harder this is? You should keep this list
asymmetry in mind as we move from sentences to lists.

For example:

> (insert-back ’4 ’(2 3 2 1))
(2 3 2 1 4)

4 Deep Lists

1. (FF) Write a procedure substitute that takes three arguments: a list, an old word, and a new word.
It should return a copy of the list, but with every occurrence of the old word replaced by the new word,
even in sublists. For example:

> (substitute ’((lead guitar) (bass guitar) (rhythm guitar) drums) ’guitar ’axe)
((lead axe) (bass axe) (rhythm axe) drums)

> (substitute ’(((((hello))))) ’hello ’goodbye)
(((((goodbye)))))

2. (FF) Now write substitute2 that takes a list, a list of old words, and a list of new words; the last
two lists should be the same length. It should return a copy of the first argument, but with each word
that occurs in the second argument replaced by the corresponding word of the third argument.

> (substitute2 ’((4 calling birds) (3 french hens) (2 turtle doves))
’(1 2 3 4) ’(one two three four))

((four calling birds) (three french hens) (two turtle doves))

Hint: You may find the position and list-ref procedures helpful. position takes in an element
and a list, and returns the index at which the element appears in the list. list-ref takes a list and
an index, and returns the item at that index of the list. Note that list indices start at 0, so the first
element of a list has index 0. However, you do not have to use these procedures.

Page 3



CS61A: Structure and Interpretation of Computer Programs Homework 2

5 Trees

For this section, remember to use the Tree Abstract Data Type that we are studying. As a reminder, here
are the relevant functions:

(make-tree DATUM CHILDREN) ; Constructor
(datum TREE) ; Accessor
(children TREE) ; Accessor

1. (FF) Write a function dfs-find that accepts two arguments: a Tree and a predicate. dfs-find
should return the first element, according to a depth-first traversal, that satisfies the predicate.

For example, if Tree were defined as
book

englishnotstructure

computerinterpretation

then (dfs-find begins-with-vowel? Tree) should yield interpretation. (Note that begins-with-vowel?
is not a predicate already available in our version of Scheme.) If the tree does not contain any element
that satisfies the predicate, the call to dfs-find should return #f. You may assume that the tree does
not already contain #f.

2. (F) Write tree-plural, a procedure that takes in a Tree of English nouns, and outputs a Tree where
every noun has been pluralized. You should make use of the plural procedure that you wrote in lab
1a.

For example, calling tree-plural on
book

structure

programcomputerinterpretation

should yield
books

structures

programscomputersinterpretations

3. (FF) Generalize tree-plural to tree-map, which takes a Tree and a procedure and returns a copy
of the Tree, where every item has been replaced with the result of calling the procedure on the original
item.

For example, (tree-map 1+ Tree), where Tree is defined below:

Page 4



CS61A: Structure and Interpretation of Computer Programs Homework 2

7

3

64

12

should yield

8

4

75

23

4. (FFF) Write has-path-sum?, a procedure that takes a Tree and a number and returns #t if there is
a path from the root to a leaf, such that the sum of the nodes along the path (including the root and
leaf) total up to the number. 1

6 Binary Trees

For this section, remember to use the Binary Tree Abstract Data Type that we are studying. Note that to
signify that a node has no child, we use an empty list.

As a reminder, here are the relevant functions:

(make-tree DATUM LEFT-CHILD RIGHT-CHILD) ; Constructor
(datum TREE) ; Accessor
(left-branch TREE) ; Accessor
(right-branch TREE) ; Accessor

1. (FF) Write tree-max and tree-min, functions that, when given a Binary Tree, return the largest
element or the smallest element, respectively. You may use the max and min functions and assume that
the Tree is composed of only numbers.

2. (FFF) Generalize these functions into a tree-accumulate function, which takes in a function and
a Binary Tree. You should write two versions of this procedure: tree-accumulate-inorder, which
performs an in-order accumulation of the tree and tree-accumulate-preorder, which performs a
pre-order accumulation of the tree. Note that for non-commutative functions, you get different results!

If Tree is the following tree:
hi

uy

!o

then we should have
1Pulled from a Stanford exercise. This is article #110 in the Stanford CS Education Library. This and other free CS materials

are available at the library (http://cslibrary.stanford.edu/). That people seeking education should have the opportunity
to find it. This article may be used, reproduced, excerpted, or sold so long as this paragraph is clearly reproduced. Copyright
2000-2001, Nick Parlante, nick.parlante@cs.stanford.edu.

Page 5

http://cslibrary.stanford.edu/
nick.parlante@cs.stanford.edu


CS61A: Structure and Interpretation of Computer Programs Homework 2

> (tree-accumulate-preorder word Tree)
hiyo!u
> (tree-accumulate-inorder word Tree)
oy!hiu

7 Case Study: Geopositioning via Wi-Fi Signals

7.1 Acknowledgements

This was adapted from a Stanford Programming Assignment: http://see.stanford.edu/materials/
icsppcs107/34-Assignment-7-Where-Am-I.pdf, with modifications made by course staff members Eric
Tzeng and Hoa-Long Tam.

7.2 Background

Many of you probably have a device that can access Wi-Fi signals, be it a laptop or your phone. What
you may not know is that these signals can also be used to locate you geographically. Apple products use
the Wi-Fi signals of nearby Wi-Fi hotspots to locate where they are in addition to GPS. This technology is
developed on a large scale by Skyhook Wireless. I have done my best to guess at how their system works,
and for this programming assignment, your job will be to develop a working prototype of such a system.

For simplicity, we will make a few assumptions about the signal. First, we assume that the signal degrades
linearly and radially at a rate of ten percent per meter. In other words, if we are ten meters away from a
signal source, we will be unable to receive the signal that it is producing, and if we are receiving a signal
that is 50% strong, we are about 5 meters away from the hotspot. We will further assume that all signal
sources transmit equally strong signals.

Each signal from a hotspot is uniquely associated with a MAC Address. We may think of these MAC
addresses as “names” for each signal. What the computer receives is a list of these names and distances. We
will use a database of where these hotspots are geographically to determine the location of the computer.

7.3 Plan of Attack

Since we know that the signal degrades radially, we can assume that when our computer receive a signal’s
MAC address and signal strength, we deduce that the computer is approximately on a circle whose center is
determined by the location of the signal source and whose radius is determined by the signal strength. All
the points on this circle are receiving that signal with that particular signal strength. Once we do this with
multiple signals, all the signals should intersect at a point, if our calculations are perfect. However, due to
small measurement errors, we should assume instead that the circles will intersect in a small clump near our
actual location. All we have to do is find out where this clump is and thus conclude our location.

Take a moment to familiarize yourself with the three abstract data types defined: points, rated points, and
circles. These are defined in the hw2.scm template file provided. In all of the questions below, remember to
respect the data abstraction.

1. (F) An association list is a list of pairs, each of whose car is a key and whose cdr is the associated
value. An example of this is your database of MAC addresses and locations, where a MAC address is
a key and the location is the corresponding value.

To obtain a circle from a name and a value for signal strength, query the database using assoc with
the name to find the center of the circle. Then, calculate how far you are from the signal using the
signal strength.

Page 6

http://see.stanford.edu/materials/icsppcs107/34-Assignment-7-Where-Am-I.pdf
http://see.stanford.edu/materials/icsppcs107/34-Assignment-7-Where-Am-I.pdf


CS61A: Structure and Interpretation of Computer Programs Homework 2

Write a function find-circle that returns a circle, given a pair whose car is a MAC Address and
whose cdr is the strength of the signal, represented as a decimal number from 0 to 1.

> (assoc ’48-2C-6A-1E-59-3D database)
(48-2c-6a-1e-59-3d 0 0)

> (find-circle (cons ’48-2C-6A-1E-59-3D 0.2))
(8.0 (0 0))

2. (F) Write a function intersection-points that takes a list of circles and returns a list of all the
points where the circles intersect. Use the intersect function provided, which takes two circles and
returns a list of the points where the circles intersect. Each circle in the list may intersect with each
of the other circles in the list. You can be sure to obtain all the possibilities by intersecting the first
circle in the list with all of the ones to the right. Then intersect the second circle with all the ones
to its right. Repeat this process until there is only one circle left in the list. N circles should yield at
most (N2−N) points of intersection. The list of points may contain duplicates; in fact, duplicates are
good—they’re affirmation that your measurements aren’t totally hokey.

> (intersection-points (list (make-circle 1 (make-point 0 0))
(make-circle 1 (make-point 1 0))))

((0.5 0.8660254037844386) (0.5 -0.8660254037844386))
> (intersection-points (list (make-circle 1 (make-point 0 0))

(make-circle 1 (make-point 1 0))
(make-circle 1 (make-point 1 1))))

((0.5 0.8660254037844386) (0.5 -0.866025437844386))
(2.7755575615628914E-16 1.0) (1.0 2.7755575615628914E-16)
(0.1339745962155614 0.5) (1.8660254037844386 0.5))

3. (F) Write a function distance-product that takes a point and a list of points and returns the product
of the distances between that point and each of the points in the list. The point itself may be in the
list. In that case, it should be removed so that it doesn’t force the product to be zero. You may use
the dist function provided, and you may assume the list contains at least two different points.

> (distance-product (make-point 2 0) (list (make-point 0 0)
(make-point 2 0)
(make-point 6 0)))

8
> (distance-product (make-point 3 3) (list (make-point 2 5)

(make-point 7 8)
(make-point 10 1)
(make-point 3 2)))

104.23531071570709

Rather than using car-cdr recursion, use map and a lambda expression wrapping around the dist
function you have been given to compute a list of distances, and then take the product. You will need
to cope with the problem where the base circle may be in the circle list, leaving a 0 where you would
rather have a 1. You can overcome this problem in a number of ways, and any one of them is more
than acceptable.

4. (FF) The next step is to rate how far each intersection point is from all the other intersection points.
To do this, write a function rate-points which takes a list of points and returns a list of rated points,
where each point is rated with its distance-product from the other points. Use map with an appropriate
lambda expression to rate the points.

> (rate-points (list (make-point 0 0)
(make-point 2 0)
(make-point 6 0)))

((12 (0 0)) (8 (2 0)) (24 (6 0)))

Page 7



CS61A: Structure and Interpretation of Computer Programs Homework 2

> (rate-points (list (make-point 2 5)
(make-point 7 8)
(make-point 10 1)
(make-point 3 2)))

((164.92422502470643 (2 5)) (320.22492095400696 (7 8))
(481.66378315169186 (10 1)) (161.24515496597098 (3 2)))

5. (FF) We will need a function called sort-points that will take a list of rated points, and sort them
in ascending order of rating.

> (sort-points (rate-points (list (make-point 2 5)
(make-point 7 8)
(make-point 10 1)
(make-point 3 2))))

((161.24515496597098 (3 2)) (164.92422502470643 (2 5))
(320.22492095400696 (7 8)) (481.66378315169186 (10 1)))
> (sort-points (rate-points (list (make-point 0 0)

(make-point 2 0)
(make-point 6 0))))

((8.0 (2 0)) (12.0 (0 0)) (24.0 (6 0)))

You will do so using insertion sort, which you were introduced to in the last homework assignment.
The hw2.scm template contains the insertion-sort-general procedure you were asked to write in
the last homework assignment. The included version has been altered to work with lists rather than
sentences. Use this updated version of insertion-sort-general, in combination with a comparator
that you will write, to write the sort-points procedure.

6. (FFF) The points with small distance ratings tend to be in a clump, while the points with large
distance ratings tend to be out by themselves. Half of the points will be clumped and the other half
will be spread out. To isolate the points in the clump, use the above functions to rate and sort the
points, and then just extract the first half of the list. If the list is of odd length, the extra element
should be discarded. Using the provided first-n-points procedure, write a function clumped-points
which takes a list of points, rates them, sorts them, and then returns the half of the points with the
smallest ratings. clumped-points should return the points without the ratings.

> (clumped-points (list (make-point 0 0)
(make-point 2 0)
(make-point 6 0)))

((2 0))
> (clumped-points (list (make-point 0 0)

(make-point 2 0)
(make-point 6 0)
(make-point 1 0)))

((1 0) (2 0))

7. (FF) The next step is to take the clumped points and average them together. The function average-point
should take a list of points and average them all down to a single point. The average point is obtained
by averaging all the x-values to get an x-value and all the y-values to get a y-value. average-point
should also include the distance rating indicating how far the average point was from all the points.
A small distance rating is small implies that the points were in a clump. You should use the let
construct to avoid computing the average point twice.

> (average-point (list (make-point 0 0) (make-point 2 0) (make-point 6 0)))
(5.925925925925926 (2.6667 0))
> (average-point (list (make-point 0 0) (make-point 2 0)

(make-point 6 0) (make-point 1 0)
(make-point 5 4) (make-point 4 5)))

Page 8



CS61A: Structure and Interpretation of Computer Programs Homework 2

(590.8865213418864 (3 1.5))

8. (F) Building on all of the functions so far, define the function find-location that takes a list of signal
strength measurements, turns them into circles, computes all the points of intersection, winnows those
points down to those which are most clumped, and returns their average point. Note, average point
returns a rated point, which you will then have to extract the single point from.

>(find-location (list (cons ’48-2C-6A-1E-59-3D 0.2) (cons ’2C-1E-54-A2-84-12 0.4)
(cons ’82-1E-52-3B-DC-24 0.3) (cons ’A3-C1-5D-73-12-9A 0.292)))

(5.01174019404359 4.94809451778074)

In this case, the implication is the circles essentially intersect around the point (5, 5). Note that the
numbers can vary somewhat between implementations due to rounding error, but they should all be
approximately the same.

8 Feedback

Now that you are done, please leave me some feedback at the following link regarding how the course is go-
ing. This is not worth points, but will give me valuable feedback that in turn improves your course experience.
Thanks! https://spreadsheets.google.com/viewform?formkey=dHY4eDNaUjR5VjBIRHlEWDlsa0tqMmc6MA

Page 9

https://spreadsheets.google.com/viewform?formkey=dHY4eDNaUjR5VjBIRHlEWDlsa0tqMmc6MA

	How to Start and Submit
	Big-Theta: What is the Runtime?
	Lists
	Deep Lists
	Trees
	Binary Trees
	Case Study: Geopositioning via Wi-Fi Signals
	Acknowledgements
	Background
	Plan of Attack

	Feedback

