
CS61A: Structure and Interpretation of Computer Programs Homework 3

CS61A Summer 2010
George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng

Homework 3

Due: Monday, July 11 2010, at 7AM

Note: The number of stars (F) besides a question represents the estimated relative difficulty of the problem:
the more the number of stars, the harder the question.

1 How to Start and Submit

First, download http://inst.eecs.berkeley.edu/~cs61a/su10/hw/hw3.scm and use it as a template
while filling out your procedures. See http://www-inst.eecs.berkeley.edu/~cs61a/su10/hw-faq.pdf

for submission instructions.

2 Data Directed Programming

1. The University of California, Berkeley Library is made up of a group of smaller libraries, each of
which uses Scheme data structures to represent its collection. Unfortunately, each library has its own
method of cataloguing books (using pairs, lists, nested association lists, etc.). Each library is required
to store a book’s title, author, and ISBN1. As the new head of IT for the centralized library system,
you need to provide the librarians with a common method of accessing this data, and you decide to
use Data-Directed Programming to accomplish this.

You will be writing generic operators so that your program can work with any type of information. A
generic operator is a procedure that can take in data of different types and perform its operation on
any of these.

For example, Moffitt Library implements its books as a list, like so:
((anna karenina) (leo tolstoy) 0143035002)

On the other hand, the Doe Library implements them as an association list. This means that they do
them like this:
((title . 1984) (author . Orwell) (isbn . 0151010269))

We call each of these a book record. Note that we need different accessors to get to each element. For
example, for Moffitt, they would make the following call:

(define (author book)

(cadr book))

Doe, on the other hand, would make this call:

(define (author book)

(cdr (assoc author book)))

(a) FF Implement a get-book-record procedure that, given a library’s data file and book title,
retrieves the corresponding book record. This procedure must work for any library’s data files.
Each data file is a list of book records.

1http://en.wikipedia.org/wiki/International_Standard_Book_Number

Page 1

http://inst.eecs.berkeley.edu/~cs61a/su10/hw/hw3.scm
http://www-inst.eecs.berkeley.edu/~cs61a/su10/hw-faq.pdf
http://en.wikipedia.org/wiki/International_Standard_Book_Number


CS61A: Structure and Interpretation of Computer Programs Homework 3

Assume that each library has called attach-tag for each piece of data belonging to it. For ex-
ample, Moffitt has called (attach-tag ’Moffitt book-record). Furthermore, all the libraries
have added all the information to a table. For example, Moffitt has called (put ’Moffitt ’title

caar).

(b) F Implement a get-isbn-number procedure that returns the ISBN from a given book record
from any library’s data file. How should the book record be set up for your procedure to work?

(c) FF Write a find-book procedure that, given a book title and a list of the book records of all of
the libraries, retrieves the corresponding book record.

(d) F The Berkeley Public Library (on Shattuck Ave.) decides to join the UC Berkeley Library
system. What do they need to do to put their database on the central system?

3 Message Passing

1. The procedures below implement a dispatch on type system for calculating the area and perimeter
of shapes. This is also called Conventional Style. This is a reasonable solution for a system that is
likely to encounter the addition of more methods/operators (eg. a number-of-sides procedure) than
types (eg. triangles, rectangles).

(define pi 3.141592654)

(define (make-square side)

(attach-tag ’square side))

(define (make-circle radius)

(attach-tag ’circle radius))

(define (area shape)

(cond ((equal? (type-tag shape) ’square)

(* (contents shape) (contents shape)))

((equal? (type-tag shape) ’circle)

(* pi (contents shape) (contents shape)))

(else (error "Unknown shape -- AREA"))))

(define (perimeter shape)

(cond ((equal? (type-tag shape) ’square)

(* 4 (contents shape)))

((equal? (type-tag shape) ’circle)

(* 2 pi (contents shape)))

(else (error "Unknown shape -- PERIMETER"))))

But let’s say that I want to add another type of shape, triangle. In order to implement this new
shape, I would need to create a new constructor, make-triangle, and modify both the area and
perimeter procedures. If we were to add more operations, this would quickly become a lot of work!

To solve this problem, let’s try a different way of representing our data. Specifically, I want to define
the area and perimeter procedures as follows:

(define (area shape)

(shape ’area))

(define (perimeter shape)

(shape ’perimeter))

Page 2



CS61A: Structure and Interpretation of Computer Programs Homework 3

Under the old Conventional Style, our shapes were represented as tagged data, and the tag told the
area and perimeter procedures which formulas to use. However, under our new Message Passing
style, our shapes now act as procedures that take a message (a word that is either area or perimeter)
and return the appropriate value.

(a) F Re-implement make-circle and make-square in message passing style to work with the new
area and perimeter procedures.

(b) F We want to make a new type, e-triangle, that represents an equilateral triangle. Add this
new type to your message passing system. Your e-triangle should work with the given area

and perimeter procedures, and you should NOT need to modify any of the code you’ve written

for part 1a! Note: The area of an equilateral triangle is given by s2
√
3

4 .

2. In a two-dimensional rectangular Cartesian coordinate system, we can represent a point as a pair of x
and y values.

(a) F Write a make-rectangular-point procedure that creates a rectangular-point in message
passing style. A rectangular-point should accept the messages ’x and ’y, and return an error
for any other message.

(b) F Create a new message, distance, that your rectangular-points will understand. (my-point
’distance) should return a procedure that takes another point as an argument and returns the
distance between the two points.

(c) Points in a plane may also be represented in polar form, using a magnitude (r) and an angle (θ).
Conversions from polar to rectangular coordinates use the equations:

x = r · cos(θ)
y = r · sin(θ)

FF Write an analogous make-polar-point procedure that takes as input a magnitude and
an angle. A polar-point should accept the ’x and ’y messages and return its corresponding
rectangular coordinates. Any other messages should return an error.

(d) F Make a rectangular-point and a polar-point. Show how you would find the distance
between the two points, using your solutions to the previous parts of this question.

4 SICP Exercises

1. Number System Additions

(a) F 2.76

(b) FF 2.77

(c) F 2.79

(d) F 2.80

2. Coercion Exercises

The examples in the book use the put-coercion and get-coercion procedures, which our version of
UCB Scheme does not implement. You should be able to use the regular put and get procedures instead.

(a) FF 2.81

(b) FF 2.83

Page 3



CS61A: Structure and Interpretation of Computer Programs Homework 3

5 Feedback

Now that you are done, please leave me some feedback at the following link regarding how the course is go-
ing. This is not worth points, but will give us valuable feedback that in turn improves your course experience.
Thanks! https://spreadsheets0.google.com/viewform?formkey=dDMtYndvOGFMbUVSc3dtcjlQUmFTVnc6MQ

Page 4

https://spreadsheets0.google.com/viewform?formkey=dDMtYndvOGFMbUVSc3dtcjlQUmFTVnc6MQ

	How to Start and Submit
	Data Directed Programming
	Message Passing
	SICP Exercises
	Feedback

