CS61A: Structure and Interpretation of Computer Programs Homework 4

CS61A SuMMER 2010

GEORGE WANG, JONATHAN KOTKER, SESHADRI MAHALINGAM, STEVEN TANG, ErRIC TZENG
HOMEWORK 4
Duge: MONDAY, JuLy 19 2010, AT TAM

Note: The number of stars (%) besides a question represents the estimated relative difficulty of the problem:
the more the number of stars, the harder the question.

1 How to Start and Submit

First, download http://inst.eecs.berkeley.edu/~cs6la/sul0/hw/hw4.scm and use it as a template
while filling out your procedures. See http://www-inst.eecs.berkeley.edu/~cs6la/sul0/hw-faq.pdf
for submission instructions.

2 Scheme OOP

1. (%) Define a random-generator class, whose constructor takes one argument called range. Imple-
ment a method called number that returns a random number in the generator’s range. Also, implement
a method called count that returns how many instances of the random-generator class have been con-
structed. There is a primitive procedure called random that works as follows: the call (random x),
where x is a non-negative integer, returns a non-negative integer between 0 and one less than x.

Examples:

(define generatorl (instantiate random-generator 5))
(define generator2 (instantiate random-generator 100))
(define generator3 (instantiate random-generator 250))

(ask generatorl ’number) should return a random integer between O and 4,
(ask generator3 ’number) should return a random integer between O and 249,
(ask generatorl ’count) should return 3.

2. (¥) Create a CalSodaMachine class, each of whose objects is instantiated with an initial number of
cans. A CalSodaMachine should accept two messages, refill and buy. Refill takes one argument,
a number of cans, and adds that many cans to the CalSodaMachine’s number of cans. Buy takes in
a number and removes that number of cans from the CalSodaMachine, and then returns "here you
go". However, if there are no cans in the inventory when buy is given, or the number of cans in the
inventory is less than the number asked for, "not enough cans" should be returned.

Examples:

(define calsodamachinel (instantiate calsodamachine 10))
(define calsodamachine? (instantiate calsodamachine 30))

(ask calsodamachinel ’buy 30) should return "not enough cans"
(ask calsodamachine2 ’buy 30) should return "here you go"
(ask calsodamachinel ’refill 50)

(ask calsodamachinel ’buy 30) should return "here you go"
(ask calsodamachine2 ’buy 1) should return "not enough cans"

Page 1


http://inst.eecs.berkeley.edu/~cs61a/su10/hw/hw4.scm
http://www-inst.eecs.berkeley.edu/~cs61a/su10/hw-faq.pdf

CS61A: Structure and Interpretation of Computer Programs Homework 4

3. (%) A devious Stanford engineer decides to steal a CalSodaMachine and recreate it as a StanfordSodaMachine.
However (of course), the engineer makes poor design decisions, and StanfordSodaMachines have a se-
curity vulnerability. Write a StanfordSodaMachine class that accepts a starting number of cans, has
the same buy and refill methods as a CalSodaMachine (do not explicitly write these methods; they
should be inherited), and also an additional method shake that removes a can from the machines
inventory. If there are zero cans left when shake is given, then return "go bears". Use inheritance in
your solution. Your answer should not use set! explicitly. Be sure to test your code!

Examples

(define stanfordsodamachinel (instantiate stanfordsodamachine 10))
(ask stanfordsodamachinel ’shake) should return "here you go"

(ask stanfordsodamachinel ’buy 10) should return "not enough cans"
(ask stanfordsodamachinel ’buy 9) should return "here you go"

(ask stanfordsodamachinel ’shake) should return "go bears"

4. (%% ) Define a class ubiquitous, each of whose objects is instantiated with an initial number, called
count. Implement a method SimplePlus that takes in a number n and increments the object’s count
by n. Then, implement a method A11P1lus that accepts a number argument, and increments the count
of all ubiquitous instances by that number. Do not use a global variable to implement this counter.
Hint: You may want more than one variable.

Note: When testing, remember to reset your STk, since old objects do not change if the class definition
is changed. They need to be reinitialized.

Examples:

(define counterl (instantiate ubiquitous 5))
(define counter2 (instantiate ubiquitous 5))
(ask counterl ’simpleplus 3)

(ask counterl ’allplus 2)

At this point,

(ask counterl ’count) should return 10, and
(ask counter2 ’count) should return 7.

5. (%% ) Create a button class. It has no instantiation variables and has two methods. One is check,
which returns the button’s state. The other is switch, which changes the state of the button. Buttons
can either be on or off. You may represent these however you wish.

Now, define a machine class, whose objects will each maintain their own list of buttons. Implement
the following methods in the machine class:

e add - adds a button onto the list of buttons
e remove - removes the most recently created button from the list of buttons

e check - takes a number n, and returns #t if button n has been pressed, #£f if button n has not
been pressed, and returns "no such button" if the button does not exist. Buttons start at n = 0,
which would correspond to the first element in the button list. You can either make button 0 the
most recent button, or the very first button created; it is up to you.

e press - takes a number n, and changes the state of button n. If the button does not exist, return
”no such button”.

3 Below the Line

1. SICP exercises (%) 3.3, (%) 3.4, (% %) 3.8. Do not use define-class or OOP-Scheme.

Page 2



CS61A: Structure and Interpretation of Computer Programs

5

2. (Jc% k) Recreate ubiquitous from question 4, but do not use define-class or OOP-Scheme. You will
want to think about what it means to have a class-variable or an instance-variable. You will also want
to think about what the calls and answers to this procedure will look like. You have some latitude
in terms of how to implement this procedure, but make sure that all the functionality of the original
procedure was here.

Short Answer

1. (%) Consider the following two procedures:

(define (foo x)
(et ((t 1))
(set! t (+ x 1))
t))

(define foo
(et ((t 1))
(lambda (x) (set! t (+ x 1)) t)))

For each definition of foo, write what Scheme would return to the following successive calls:

(foo 4)
(foo 5)
(foo 6)

Explain what is different between the two procedures.

Environment Diagrams

For this section, you do not need to submit these online, although you certainly can. You can use paint, or
just ascii art, or just draw them with pencil and paper and bring them to your face-to-face grading session.

1. (¥) Draw an environment diagram for the following calls.

(define x 3)
(define (foo z)
(+ z x))
(foo 7)
(define (awesome x)
(foo x))
(awesome 100)

2. (%) What does the following program do, and why? Draw the environment diagram. What if we
typed x at the end? What would be returned?

(define x 4)
(define (changextol x)
(set! x 1))

Page 3

Homework 4



CS61A: Structure and Interpretation of Computer Programs Homework 4

3. (Y% %) Draw an environment diagram for the following calls.

(define x 3)
(define (foo z)
(+ z x))
(define (feed 4d)
(foo 4))
(define (amazing h)
(let ((x 4
(+ (lambda (s t) (+ s t x))))
(feed (+ x h))))
(amazing 7)

6 Extra for Experts (Optional)

Discuss multiple inheritance patterns. Why might it be better to inherit from a second-choice parent instead
of a first-choice grandparent? When might it be better to go inherit from first grandparents before second
parents? Come up with an example for each.

7 Feedback

Now that you are done, please leave me some feedback at the following link regarding how the course is go-
ing. This is not worth points, but will give us valuable feedback that in turn improves your course experience.
Thanks! https://spreadsheets.google.com/viewform?formkey=dFNWdVZJREhxdWhBendJY2hfb2RiLUE6MQ

Page 4


https://spreadsheets.google.com/viewform?formkey=dFNWdVZJREhxdWhBendJY2hfb2RiLUE6MQ

	How to Start and Submit
	Scheme OOP
	Below the Line
	Short Answer
	Environment Diagrams
	Extra for Experts (Optional)
	Feedback

