
CS61A: Structure and Interpretation of Computer Programs Homework 5

CS61A Summer 2010
George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng

Homework 5

Due: Monday, July 26 2010, at 7AM

N ote: The number of stars (F) besides a question represents the estimated relative difficulty of the problem:
the more the number of stars, the harder the question.

1 How to Start and Submit

First, download http://inst.eecs.berkeley.edu/~cs61a/su10/hw/hw5.scm and use it as a template
while filling out your procedures. See http://www-inst.eecs.berkeley.edu/~cs61a/su10/hw-faq.pdf
for submission instructions.

2 Mutable Data

1. (FF) Draw a box and pointer diagram for the following sequence of expressions.

> (define a (list 1 2 3))
> (define b (list 1 2 3))
> (define c (cons a b))
> (define d (list c (cdr a) (cadr b)))
> (define e (list 0 1 2))
> (set-cdr! (cdr e) (cdadr d))

2. (F) Write the procedure append! that, given two lists, appends the second list onto the first using
ONLY list mutation: do not create any new pairs.

Examples:

> (define a (list 1 2 3))
> (define b (list 4 5 6))
> (append! a b)
> a
(1 2 3 4 5 6)
> b
(4 5 6)

3. (FF) Write the procedure merge! that, given two lists (both are lists of numbers only and both are
in increasing order) combines the list such that the resulting list is in increasing numerical order as
well. Use ONLY list mutation, do not create any new pairs.

Examples:

> (merge! (list 2 3 5 9) (list 1 6 7 11))
(1 2 3 5 6 7 9 11)

4. (FF) SICP Exercises: count-pairs

(a) 3.16

(b) 3.17

Page 1

http://inst.eecs.berkeley.edu/~cs61a/su10/hw/hw5.scm
http://www-inst.eecs.berkeley.edu/~cs61a/su10/hw-faq.pdf
http://www-mitpress.mit.edu/sicp/full-text/book/book-Z-H-22.html#%_thm_3.16
http://www-mitpress.mit.edu/sicp/full-text/book/book-Z-H-22.html#%_thm_3.17


CS61A: Structure and Interpretation of Computer Programs Homework 5

5. (FF) Queue Implementation: SICP Exercise 3.21.

We strongly recommend reading the section on queues in SICP before attempting the question.

6. (FFF) (Optional) Memoization: SICP Exercise 3.27

3 Vectors

N ote: For the following questions, please do not use list->vector, vector->list or apply. Use vector
procedures like make-vector and vector-set!.

1. (F) Write a procedure called vsearch that searches an unsorted vector for a given element and returns
the location index of that item (remember that vectors, like lists, are numbered starting at 0). If the
element is not found in the vector, return -1. In general, does this seem like this would take more time,
less time, or the same amount of time doing such a search on a list?

Examples:

> (define sample-vec (make-vector 5 12)
#(12 12 12 12 12)
> (vector-set! sample-vec 3 6)
okay
> sample-vec
#(12 12 12 6 12)
> (vsearch sample-vec 6)
3
> (vsearch ’q (vector ’h ’i ’j ’k ’l))
-1

2. (FF) Write a procedure called vector-append for vectors that appends two vectors, like the ’append’
procedure does for lists.

Examples:

> (vector-append (make-vector 3 ’a) (make-vector 2 ’q))
#(a a a q q)
> (vector-append (vector ’a ’b ’c) (vector 1 2 3))
#(a b c 1 2 3)

3. (F) Write a procedure vector-reverse that takes a vector and returns a new vector with the entries
of the given vector reversed.

Examples:

> (vector-reverse (vector ’a ’b ’c))
#(c b a)
> (vector-reverse (vector 1))
#(1)

4. (FFF) Write a procedure vector-filter that takes a predicate function and a vector as arguments
and returns a new vector containing only those elements of the argument vector for which the predicate
was true. The new vector must exactly big enough for these elements that are true in the predicate.

How does the runtime of your procedure compare with this:

(define (vector-filter pred vec)
(list->vector (filter pred (vector->list vec))))

5. (FF) Remember vector-reverse? Great! Write the procedure vector-reverse! that reverses a
given vector “in place”. In other words, do not create a new vector; use the given one only.

Page 2

http://www-mitpress.mit.edu/sicp/full-text/book/book-Z-H-22.html#%_thm_3.21
http://www-mitpress.mit.edu/sicp/full-text/book/book-Z-H-22.html#%_sec_3.3.2
http://www-mitpress.mit.edu/sicp/full-text/book/book-Z-H-22.html#%_thm_3.27


CS61A: Structure and Interpretation of Computer Programs Homework 5

Examples:

> (define sample-vec (vector 1 2 3 4 5))
> (vector-reverse! sample-vec)
#(5 4 3 2 1)
> sample-vec
#(5 4 3 2 1)

4 Meta-Circular Evaluator

1. The following SICP exercises are designed to familiarize yourself with the structure of the metacircular
evaluator by incrementally adding features. We recommend that you do the following exercises in the
given order. Some are less directed and more open-ended than others and require you to make and/or
justify design decisions.

• (F) 4.2(a) : cond clauses

• (FF) 4.4 : and & or

• (FF) 4.5 : (<test> => <recipient>) cond clauses

• (FF) 4.6 : let

• (FF) (Optional) 4.7 : let*

• (F) 4.13 : make-unbound!

• (FFF) 4.14 : Why doesn’t primitive map work?

2. (FFF) (Optional) Modify the metacircular evaluator to allow type-checking of arguments to proce-
dures. Here’s how the feature should work:

When a new procedure is defined, a formal parameter can be either a symbol (as usual) or a list of
two elements. In the second case: The first value will be a predicate procedure of one argument that
returns #t if the argument is of the desired type. The second value will be the name of the formal
parameter.

Example:

MCE> (define (foo (integer? num) ((lambda (x) (not (null? x))) list))
(list-ref list num))
foo
MCE> (foo 3 ’(a b c d e))
d
MCE> (foo 3.5 ’(a b c d e))
Error: wrong argument type -- 3.5
MCE> (foo 2 ’())
Error: wrong argument type -- ()

5 Extra for Experts (Optional)

SICP Exercises 4.16 - 4.21. These exercises explore the subtle differences in how variables are defined and
scoped, using recursion, mutual recursion and environment diagrams.

Page 3



CS61A: Structure and Interpretation of Computer Programs Homework 5

6 Feedback

Now that you are done, please leave me some feedback at the following link regarding how the course is go-
ing. This is not worth points, but will give us valuable feedback that in turn improves your course experience.
Thanks! https://spreadsheets.google.com/viewform?formkey=dDlZX1I2OGc1dk5GOEN3Y0VqZi1zUnc6MQ

Page 4

https://spreadsheets.google.com/viewform?formkey=dDlZX1I2OGc1dk5GOEN3Y0VqZi1zUnc6MQ

	How to Start and Submit
	Mutable Data
	Vectors
	Meta-Circular Evaluator
	Extra for Experts (Optional)
	Feedback

