CS 61A Summer 2010 Week 1B Lab
Wednesday 6/23 Afternoon

This lab introduces a new special form, lambda.

1. Type each of the following into Scheme, and note the results. See when you can predict the results
before letting Scheme do the computation.

(lambda (x) (+ x 3))

((lambda (x) (+ x 3) 7)

You can think of lambda as meaning “the function of...,” e.g., “the function of x that returns (+ x 3).

(define (make-adder num)
(lambda (x) (+ x num)))

((make-adder 3) 7)

(define plus3 (make-adder 3))
(plus3 7)

(define (square x) (* x x))
(square 5)

(define sq (lambda (x) (* x x)))
(sq 5)

(define (try f) (f 3 5))

(try +)

(try word)

2. Suppose we have the following definitions:

(define (foo num) (* num 2))
(define (bar fn) (lambda (num) (fn (+ num 2))))

(define (baz fn) (lambda (num) (+ (fn num) 2)))

e What does foo take as input? What does foo output?

e What does bar take as input? What does bar output?

1



e What type of data will calling bar on foo, i.e. (bar foo) return?
e How many procedure calls do we make TOTAL if we evaluate ((bar foo) 2)7

e Will ((bar foo) 3) and ((baz foo) 3) give the same answer? Think about it yourself a bit
before consulting STk.

3. Write a procedure substitute that takes three arguments: a sentence, an old word, and a new
word. It should return a copy of the sentence, but with every occurrence of the old word replaced by
the new word. For example:

> (substitute °’(she loves you yeah yeah yeah) ’yeah ’maybe)

(she loves you maybe maybe maybe)

4. Consider a Scheme function g for which the expression

(g D

returns the value 3 when evaluated. Determine how many arguments g has. In one word, also describe

as best you can the type of value returned by g.

5. For each of the following expressions, what must £ be in order for the evaluation of the expression to
succeed, without causing an error? For each expression, give a definition of £ such that evaluating the
expression will not cause an error, and say what the expression’s value will be, given your definition.
£

(£)

(f 3)

(£

(C(£)) 3)

6. Find the values of the expressions
((t 1+) 0 (¢ £ 1)) 0) (& £) 1+) 0)

where 1+ is a primitive procedure that adds 1 to its argument, and t is defined as follows:

(define (t f)
(lambda (x) (f (f (f x)))) )

Work this out yourself before you try it on the computer!



