
CS 61A Summer 2010 Week 3 Lab
Wednesday 7/7 Afternoon

Note: Problem 1 and 2 deals with a puzzle you should do by hand; it does not involve programming
(yet).
1. Poor Louis Reasoner never worked hard in computer science and as a result had to drop out and
become a cashier in Walmart. One day, Louis needed to give his customer back 64 cents in change and
he wondered how many ways he can combine just quarters and cents to get the 0.64 dollars he needs
to give back. (for instance, one way to do it is to combine 2 quarter and 14 cents) Can you figure it
out?

2. The next day, Louis Reasoner needed to return 89 cents. Can you figure out how many ways there
is to do it? (HINT: 0.89 dollars is exactly one quarter more than 0.64 dollars)

Note: The next part of the lab exercises concerns the change counting program on pages 40–41 of
Abelson and Sussman. You can find the code at ∼cs61a/lib/change.scm

3. Identify two ways to change the program to reverse the order in which coins are tried, that is, to
change the program so that pennies are tried first, then nickels, then dimes, and so on.

4. Abelson and Sussman claim that this change would not affect the correctness of the computation.
However, it does affect the efficiency of the computation. Implement one of the ways you devised
in exercise 1 for reversing the order in which coins are tried, and determine the extent to which the
number of calls to cc is affected by the revision. Verify your answer on the computer, and provide an
explanation. Hint: limit yourself to nickels and pennies, and compare the trees resulting from (cc 5

2) for each order.

5. Modify the cc procedure so that its kinds-of-coins parameter, instead of being an integer, is a
sentence that contains the values of the coins to be used in making change. The coins should be tried
in the sequence they appear in the sentence. For the count-change procedure to work the same in
the revised program as in the original, it should call cc as follows:

(define (count-change amount)

(cc amount ’(50 25 10 5 1)) )

Note: Don’t worry if you run out of time for the remaining exercises. The count-change program is
the critical part of this lab.

6. Many Scheme procedures require a certain type of argument. For example, the arithmetic procedures
only work if given numeric arguments. If given a non-number, an error results.

Suppose we want to write safe versions of procedures, that can check if the argument is okay, and
either call the underlying procedure or return #f for a bad argument instead of giving an error. (We’ll
restrict our attention to procedures that take a single argument.)

> (sqrt ’hello)

1



ERROR: magnitude: Wrong type in arg1 hello

> (type-check sqrt number? ’hello)

#f

> (type-check sqrt number? 4)

2

Write type-check. Its arguments are a function, a type-checking predicate that returns #t if and only
if the datum is a legal argument to the function, and the datum.

5. We really don’t want to have to use type-check explicitly every time. Instead, we’d like to be able
to use a safe-sqrt procedure:

> (safe-sqrt ’hello)

#f

> (safe-sqrt 4)

2

Don’t write safe-sqrt! Instead, write a procedure make-safe that you can use this way:

> (define safe-sqrt (make-safe sqrt number?))

It should take two arguments, a function and a type-checking predicate, and return a new function
that returns #f if its argument doesn’t satisfy the predicate.
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