CS 61A Summer 2010 Week 4A Lab

Monday 7/19 Afternoon

1. Do this exercise on paper:

Draw the environmental diagram for the following expressions and use it to determine the return value of the final (change 92) call.
(define secret 42)
(define change
(let ((fn (let ((secret 23))
(lambda (x) (set! secret x))))
($(\mathrm{x} 12))$)
(lambda (secret)
(fn secret))))
(change 92)
2. Exercise 3.12 of Abelson and Sussman.
3. Suppose that the following definitions have been provided.

```
(define x (cons 1 3))
(define y 2)
```

A CS 61A student, intending to change the value of x to a pair with car equal to 1 and $c d r$ equal to 2 , types the expression (set! (cdr x) y) instead of (set-cdr! x y) and gets an error. Explain why.

4a. Provide the arguments for the two set-cdr! operations in the blanks below to produce the indicated effect on list1 and list2. Do not create any new pairs; just rearrange the pointers to the existing ones.

```
> (define list1 (list (list 'a) 'b))
list1
> (define list2 (list (list 'x) 'y))
list2
> (set-cdr!
```

\qquad

``` )
okay
> (set-cdr!
``` \(\qquad\)
``` )
okay
> list1
( ( a x b) b)
> list2
( \((x\) b) \(y)\)
```

4b. After filling in the blanks in the code above and producing the specified effect on list1 and list2, draw a box-and-pointer diagram that explains the effect of evaluating the expression (set-car! (cdr list1) (cadr list2)) .

