
In this lab exercise, you will become familiar with the Python programming language, for which you’ll be
writing an interpreter in project 3.

To begin, type python at the Unix shell prompt — NOT from Scheme! You should see something like
this:

Python 2.6.2 (r262:71600, Sep 11 2009, 11:35:31)
[GCC 4.4.1] on sunos5
Type "help", "copyright", "credits" or "license" for more information.
>>>

The >>> is the Python prompt, like the STk> in Scheme. (Later, in some of the examples below, you will
see a “...” prompt while in the middle of defining a procedure, loop, or if statement.)

Type each of the following lines into Python and note the results. Some will give error messages. If you
can’t make sense of the result, ask for help. Try to predict what each line will do before running it.

2 + 3

2.0 + 3

print 3.6/2

import this

"Hello, World!"

"Hello, World!"[2]

"Hello, World!"[13]

"Hello, World!"[-1]

"Hello, World!"[-20]

print "om" + ("nom"*2)

print "Hello, World!"[1:5]

x = 37
print math.sqrt(x)

p = 1 # I am a comment
q = 1
while p < 100:
 print q
 temp = p
 p = q
 q = p + q

def greet(who):
 print "Hello, " + who

square = lambda x: x*x

square(6)

(lambda x, y: x**y)(6,4)

def divides(a, b):
 return b != 0 and a % b == 0
divides(123456789, 11)

def isEven(n):
 if divides(n, 2):
 return True
 return False

isEven

isEven(2)

a = 4
while True:
 if isEven(a):
 print a
 if a > 10:
 break
 a = a + 1

def sumDigits(n):
 s = 0
 while n > 0:
 d = n % 10
 s = s + d
 n = n / 10
 return s

range(7)

range(7)[2]

range(5,13)

len("Go west!")

len(range(0,20,2))

nums = map(square, range(5,13,2))

nums

sum = reduce(lambda a,b: a+b, nums)

print nums

nums.append(13**2)

nums[-1] = 15**2

for n in range(-2,20):
 print n

for letter in "Queen Elizabeth":
 print letter

name = raw_input("What is your name? ")
print "Hello, " + name + "."

def primes_to(n):
 sieve = range(n+1)
 primes = []
 sieve[1] = 0 #mark 1 as not prime
 for i in range(len(sieve)):
 if sieve[i] != 0: # if i hasn't been marked as prime
 primes.append(i) # add it to the list of primes
 for j in range(i*i, len(sieve), i):
 sieve[j] = 0 #mark multiples of i, starting at i2 as prime
 return primes

primes = primes_to(100)

def isPrime(n):
 if n > primes[-1]:
 return "I don't know"
 else:
 return n in primes

def isPrime2(n):
 if n > primes[-1]:
 return "I don't know"
 elif n not in primes:
 return False
 else:
 return False

for s in [i + j for i in "abc" for j in "def"]:
 print s

nums = [[1, 2, 3], [4,5,6], [7,8,9]] #Python can do deep lists, too!

column2 = [row[1] for row in nums]

print column2

