
CS 61A Summer 2010 Week 7A Lab
Monday 8/2 Afternoon

This lab will introduce you to the idea of continuations. Feel free to work on the project after under-
standing them.

Suppose we have the following definition:

(define (square x cont)

(cont (* x x)))

Here x is the number we want to square, and cont is the procedure to which we want to pass the
result. Now try these experiments:

> (square 5 (lambda (x) x))

> (square 5 (lambda (x) (+ x 2)))

> (square 5 (lambda (x) (square x (lambda (x) x))))

> (square 5 display)

> (define foo 3)

> (square 5 (lambda (x) (set! foo x)))

> foo

Don’t just type them in – make sure you understand why they work! The nondeterministic evaluator
works by evalutating every expression with two continuations, one used if the computation succeeds,
and one used if it fails.

(define (reciprocal x yes no)

(if (= x 0)

(no x)

(yes (/ 1 x))))

> (reciprocal 3 (lambda (x) x) (lambda (x) (se x ’(cannot reciprocate))))

> (reciprocal 0 (lambda (x) x) (lambda (x) (se x ’(cannot reciprocate))))

1. Copy the file ∼cs61a/lib/ambeval-step2.scm to your directory. This file contains the incomplete
Non-deterministic evaluator where if and choose has been implemented.

Implement the special form or into our current non-deterministic evaluator. Note that we do not yet
support procedure call, so you have to test your code with atoms and choose statements inside the
or.

2. Once you feel comfortable with the ∼cs61a/lib/ambeval-step2.scm code. Take a look at
∼cs61a/lib/ambeval-final.scm, ignore the special form handling for now and try to understand
the code for handling procedure calls. The procedure eval-args looks quite tricky but isn’t that hard

1



to understand. Just keep in mind that mc-eval (and hence eval-args) needs to pass the return value
to the success continuation rather than returning it directly.

3. Now, consider the set! code. The only tricky part here is that we need to save the old value
of the variable so we can set it back when we backtrack. Do 4.51 from Abelson and Sussman and
you can think about how we can use this feature to not repeatly return the same value when we
choose-another.

2


