
CS 61A Summer 2010 Week 8A Lab

Monday 8/9 Afternoon

1. For this lab you’ll need three people, each on a separate workstation.

One person should choose to be the server, and should do this:

> (load "~cs61a/lib/im-server.scm")

> (im-server-start)

Make a note of the IP address and port number that this prints!

The other people will be clients. They should do this:

> (load "~cs61a/lib/im-client.scm")

> (im-enroll "123.45.67.89" 6543) ; use actual numbers from server!

but using the server’s IP address instead of 123.45.67.89 and the server’s port number instead of 6543.

(Note that the IP address must be enclosed in quotation marks.)

The clients can then send each other messages:

> (im ’cs61a-xy "Hi there, how are you?")

The messages can’t include more than one line.

A client can leave the IM system by running

> (im-exit)

The server can quit (which disconnects all the clients) with

> (im-server-close)

For the rest of this lab, we’ll be using MapReduce, a programming paradigm developed by Google that

uses higher-order functions to allow a programmer to process large amount of data in parallel on many

computers. Hadoop is an open source implementation of the mapreduce design.

Any computation in mapreduce consists primarily of two functions: the mapper and the reducer. (Note:

The Google mapreduce paper in the course reader says “the map function” to mean the function that

the user writes, the one that’s applied to each datum; this usage is confusing since everyone else uses

“map” to mean the higher-order function that controls the invocation of the user’s function, so we’re

calling the latter the mapper :

(map mappermappermapper data)

Similarly, we’ll use reduce to refer to the higher-order function, and reducer to mean the user’s

accumulation function.)

The mapper function takes a (input-key . input-value) pair as its argument and returns a list of

(finalkey . intermediatevalue) pairs. (It returns a list of pairs, not a single pair, both to allow

1



more than one intermediate value per input value (e.g., separating a line into words) and to allow

for the possibility of returning an empty stream, meaning no intermediate values at all, so that the

mapper can also effectively filter the input data.)

The reducer function is applied to each group of intermediate-values with the same final-keys,

and it returns a (finalkey . finalvalue) pair. (The reducer takes two values as arguments: one new

value and one partially accumulated value, just like the two-argument function used with accumulate.)

Since there are many groups, the outputs of the reducer function are appended together to form the

final output stream.

We’ve developed a system that allows you to run mapreduce computations on a computer cluster from

within STk. Our version of mapreduce in Scheme uses slightly simpler semantics than the original

MapReduce.

The syntax for performing a mapreduce computation in STk is as follows:

(mapreduce <mapper> <reducer> <base-case> <input>)

Mapper is a one-argument procedure that specifies the function that map applies.

Reducer is a procedure specifying the reduction function. Base-case is the base case for the reduction

function. It is similar to the base case argument in Scheme’s accumulate.

Input specifies the input data to the MapReduce computation. This argument may be a string, the

name of a distributed file directory stored on all the machines in the parallel cluster, e.g., "/gutenberg"

for the Project Gutenberg collection of public domain books. Alternatively, it may be a stream (not

the name of a stream!) that was produced by an earlier invocation of mapreduce.

If you forget to save the output of mapreduce, you can always run (get-last-mapreduce-output),

which returns the last stream mapreduce returned.

For example, suppose we want to count the number of lines in the collected works of Shakespeare. Our

input would be a set of key-value pairs with the name of a play as the key and a line of text as the

value. The input is provided in a distributed file directory named "/gutenberg/shakespeare".

We could solve this problem with mapreduce as follows:

(mapreduce (lambda (input-key-value-pair)

(list (make-kv-pair ’line 1))) ; mapper

+ ; reducer

0 ; base case

"/gutenberg/shakespeare") ; data

Since we’re trying to get a total count for all the works of Shakespeare, not a separate count for each

play, we give every intermediate pair the same key. We used the word line, but anything would have

worked. The value is 1 because each line counts as one line!

2



What we want the reducer to do is add up all the 1s from all the files. So we don’t need a complicated

reducer; we just use +.

In this case, there’s only one instance of reduce adding up all the values, but in more general cases

there’ll be one per key, and so what mapreduce returns is not a single reduced value, but a stream of

key-value pairs. In this case it’ll be a stream of length 1:

((line . number))

To get just the number, we’d say (kv-value (stream-car (mapreduce ...))). To use mapreduce,

you must first ssh into the Berkeley clusters by using the command

ssh cs61a-XX@icluster1.eecs.berkeley.edu

where you replace XX with your login.

Exercises:

2. The example above is inefficient because the map phase happens in parallel, but the reduce phase

happens on a single machine, since all the keys are the same, and each group of same-key pairs go to

a single reduce instance. Fix this example so that the plays are line-counted in parallel, but we still

get a single total line count at the end. (Hint: Do something to the value that mapreduce returns.)

3


