OBJECT ORIENTED PROGRAMMING

GEORGE WANG
gswang.cs6lal@gmail.com
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

July 13, 2010

Review

Things we talked about:

define-class, instantiate, method, ask, instance-vars, instantiation variables,
class—-vars, parent, default-method

Inheritance, Continued

What happens when you send an object a message for which there is no method defined in its class? If the
class has no parent, this is an error. If the class does have a parent, and the parent class understands the
message, it works as we’ve seen here. But you might want to create a class that follows some rule of your
own devising for unknown messages:

;7335 In file cs6la/lectures/3.0/demo2.scm
(define-class (squarer)

(default-method (* message message))
(method (7) ’'buzz) )

(define s (instantiate squarer))

(

>
> (ask s 6) > (ask s 7) > (ask s 8)
36 buzz 64

Within the default method, the name message refers to whatever message was sent. Let’s say we want to
maintain a list of all the instances that have been created in a certain class. It’s easy enough to establish the
list as a class variable, but we also have to make sure that each new instance automatically adds itself to the
list. We do this with an INITIALIZE clause:

;7355 In file cs6la/lectures/3.0/demo2.scm
(define-class (counter)



instance-vars (count 0))
class-vars (total 0) (counters ' ()))
initialize (set! counters (cons self counters)))
method (next) (set! total (+ total 1))
(set! count (+ count 1))
(list count total)))
(define ¢l (instantiate counter))
(define c2 (instantiate counter))
(ask counter ’counters)
#<procedure> #<procedure>)

(
(
(
(

>
>
>

(

There was a bug in our pigger class definition; Scheme gets into an infinite loop if we ask Porky to greet,
because it tries to translate the word my into Pig Latin but there are no vowels aeiou in that word. To get
around this problem, we can redefine the pigger class so that its say method says every word in Pig Latin
except for the word my, which it'll say using the USUAL method that persons who aren’t piggers use:

;7333 In file cs6la/lectures/3.0/demo2.scm
(define-class (pigger name)
(parent (person name))
(method (pigl wd)
(1f (member? (first wd) '(a e 1 o u))
(word wd ’"ay)
(ask self "pigl
(word (bf wd) (first wd))) ))
(method (say stuff)
(if (atom? stuff)
(if (equal? stuff ’"my)
(usual ’"say stuff)
(ask self 'pigl stuff))
(map (lambda (w) (ask self ’'say w)) stuff))) )
> (define porky (instantiate pigger ’‘porky))
> (ask porky ’greet)
(ellohay my amenay isay orkypay)

(Notice that we had to create a new instance of the new class. Just doing a new define-class doesn’t change
any instances that have already been created in the old class. Watch out for this while you're debugging the
OOP programming project.) We invoke usual in the say method to mean “say this stuff in the usual way,
the way that my parent class would use.”

The last thing we talk about is multiple inheritance. This is the idea that children can have multiple parents.
The way to think about how the parents are "picked’ to evaluate what needs to happen next is recursive
search. You know this to be Depth First Search. In other words, we pick the first parent, and recursively
apply that rule, until we get to the second parent, or a method that handles it, and we repeat this over and
over.



	Review
	Inheritance, Continued

