
ENVIRONMENTS AND LOCAL STATE 14
GEORGE WANG

gswang.cs61a@gmail.com
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

July 15, 2010

1 Review

1.1 The Golden Rules

1. Calling a lambda procedure makes frames, pointing to the right bubble of the lambda.

2. Making a lambda procedure makes 2 bubbles, the left holding information, and the right pointing to the
current frame.

2 The Environment Model

2.1 Exercise:

Draw the Environment!

(define (f x)
(define (g y)

(+ x y))
(g 3))

> (f 5)

2.2 Exercise: make-adder

Draw the Environment!

(define (make-adder n)
(lambda (x) (+ x n)))

(define 3+ (make-adder 3))

1



(define n 7)
> (3+ n)

Scheme’s rule, in which the procedure’s defining environment (the right bubble) is extended, is called
LEXICAL SCOPE. The other rule, in which the current environment is extended, is called DYNAMIC SCOPE.
A language with dynamic scope is possible, but it would have different features from Scheme.

Remember why we needed the environment model: We want to understand local state variables. The
mechanism we used to create those variables was

(define some-procedure
(let ((state-var initial-value))

(lambda (...) ...)))

Roughly speaking, the let creates a frame with a binding for state variable. Within that environment, we
evaluate the lambda. This creates a procedure within the scope of that binding. Every time that procedure
is invoked, the environment where it was created-that is, the environment with state variable bound-is
extended to form the new environment in which the body is evaluated. These new environments come and
go, but the state variable isn’t part of the new frames; it’s part of the frame in which the procedure was
defined. That’s why it sticks around.

3 Converting Above-the-Line OOP

3.1 Exercise: make-count

Draw the Environment Diagram:

;;;;; In file cs61a/lectures/3.2/count4.scm
(define make-count

(let ((glob 0))
(lambda ()

(let ((loc 0))
(lambda ()

(set! loc (+ loc 1))
(set! glob (+ glob 1))
(list loc glob))))))

The variable glob here is a class variable if we think of this procedure as something that creates count
objects. In that case, the variable loc is created in an environment that is inside the class lambda, but outside
the lambda that represents an instance.

This example should show how environments give us the tools we need in order to create the critical section
of local state in our three pillars for object oriented programming. Now, you know how to implement each
of the three sections: Message Passing, Inheritance, and Local State. Now remember, the difference between
this and what we know to be OOP is the idea of all the messages to be passed. But it turns out this is a easy
fix:

;;;;; In file cs61a/lectures/3.2/count5.scm
(define make-count

(let ((glob 0))
(lambda ()

(let ((loc 0))
(lambda (msg)

(cond ((eq? msg ’local)

2



(lambda () (set! loc (+ loc 1)) loc))
((eq? msg ’global)
(lambda () (set! glob (+ glob 1)) glob))

(else (error “No such method” msg)) ))))))

Note, that the lets and the lambdas are precisely the same, except that in the innermost lambda, we
instead have a dispatch procedure. Let’s look at the same thing in OOP:

;;;;; In file cs61a/lectures/3.2/count6.scm
(define-class (count)

(class-vars (glob 0))
(instance-vars (loc 0))
(method (local) (set! loc (+ loc 1)) loc)
(method (global) (set! glob (+ glob 1)) glob))

4 Exercises2

Draw the environment diagrams!

4.1 De-Sugaring Lets:

(let ((a 3)) (+ 5 a))
(let ((a 3)) (lambda (x) (+ x a)))
((let ((a 3)) (lambda (x) (+ x a))) 5)

4.2 Swapping Values:

(define (make-prev last-value)
(lambda (new)

(define temp last-value)
(set! last-value new) temp))

(define prev (make-prev ’*first-call*))
(prev ’a)

4.3 Setter

(define x ’x)
(define (changer x y)

(y)
(y)
x)

(changer 16
(lambda () (set! x (* x x))))

4.4 List Recursion with Polymorphism:

Fill in the blanks to code map without using if!

2Courtesy of Carolen

3



(define-class (pair a b)
(method (map fn) __________________)

(define-class (empty-list)
(parent pair ’() ’())
(method (map fn) ___________________)

4.5 I’m Confused...

(define secret 42)
(define change

(let ((fn
(let ((secret 23))

(lambda (x) (set! secret x))))
(x 12))

(lambda (secret) (fn secret))))
(change 92)

4


	Review 
	The Golden Rules

	The Environment Model
	Exercise:
	Exercise: make-adder

	Converting Above-the-Line OOP
	Exercise: make-count

	ExercisesCourtesy of Carolen
	De-Sugaring Lets:
	Swapping Values:
	Setter
	List Recursion with Polymorphism:
	I'm Confused...


