STREAMS

GEORGE WANG
gswang.cs6lal@gmail.com
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

July 27, 2010

Motivation

Streams are an abstract data type, not so different from rational numbers, in that we have constructors and
selectors for them. But we use a clever trick to achieve tremendously magical results. As we talk about the
mechanics of streams, there are three big ideas to keep in mind:

¢ Efficiency: Decouple order of evaluation from the form of the program.

¢ Infinite data sets.

¢ Functional representation of time-varying information (versus OOP).
You'll understand what these all mean after we look at some examples.

How do we tell if a number n is prime? Never mind computers, how would you express this idea as a
mathematician? Something like this: “N is prime if it has no factors in the range 2 < f <n.”

So, to implement this on a computer, we should :
* Get all the numbers in the range[2, n—1].
* See which of those are factors of n.
® See if the result is empty.

;i In file cs6la/lectures/3.5/primel.scm
(define (prime? n)
(null? (filter (lambda (x) (= (remainder n x) 0))
(range 2 (- n 1)))))

But we don’t usually program it that way. Instead, we write a loop:

;iiii In file cs6la/lectures/3.5/prime0.scm
(define (prime? n)



(define (iter factor)
(cond ((= factor n) #t)
((= (remainder n factor) 0) #f)
(else (iter (+ factor 1)))))
(iter 2))

(Never mind that we can make small optimizations like only checking for factors up to /n. Let’s keep it
simple.)

Why don’t we write it the way we expressed the problem in words? The problem is one of efficiency. Let’s
say we want to know if 1000 is prime. We end up constructing a list of 998 numbers and testing all of them
as possible factors of 1000, when testing the first possible factor would have given us a false result quickly.

Overview

The idea of streams is to let us have our cake and eat it too. We'll write a program that looks like the first
version, but runs like the second one. All we do is change the second version to use the stream ADT instead
of the list ADT:

;7i7::7 In file cs6la/lectures/3.5/prime2.scm
(define (prime? n)
(stream-null?
(stream—filter (lambda (x) (= (remainder n x) 0))
(stream-range 2 (- n 1)))))

The only changes are st ream-range instead of range, stream-null? instead of nul1?,and stream-filter
instead of filter. How does it work? A list is implemented as a pair whose car is the first element and
whose cdr is the rest of the elements. A stream is almost the same: It’s a pair whose car is the first element

and whose cdr is a promise to compute the rest of the elements later.

For example, when we ask for the range of numbers [2,999] what we get is a single pair whose car is
2 and whose cdr is a promise to compute the range [3,999]. The function stream-range returns that
single pair. What does stream-filter do with it? Since the first number, 2, does satisfy the predicate,
stream-filter returns asingle pair whose car is 2 and whose cdr is a promise to filter the range [3, 999)].
Stream-filter returns that pair. So far no promises have been “cashed in.” What does st ream-null?
do? It sees that its argument stream contains the number 2, and maybe contains some more stuff, although
maybe not. But at least it contains the number 2, so it’s not empty. stream-null? returns #f right away,
without computing or testing any more numbers.

Sometimes (for example, if the number we’re checking is prime) you do have to cash in the promises. If so,
the stream program still follows the same order of events as the original loop program; it tries one number
at a time until either a factor is found or there are no more numbers to try.

Summary: What we’ve accomplished is to decouple the form of a program—the order in which computa-
tions are presented—from the actual order of evaluation. This is one more step on the long march that this
whole course is about, i.e., letting us write programs in language that reflects the problems we’re trying to
solve instead of reflecting the way computers work.

Implementation

How does it work? The crucial point is that when we say something like

(cons—-stream from (stream-range (+ from 1) to))



Inside stream-range, we can’t actually evaluate the second argument to cons-stream. That would
defeat the object, which is to defer that evaluation until later (or maybe never). Therefore, cons—stream
has to be a special form. It has to cons its first argument onto a promise to compute the second argument.
The expression (cons-stream a b) isequivalentto (cons a (delay b)).

Delay is itself a special form, the one that constructs a promise. Promises could be a primitive data type,
but since this is Scheme, we can represent a promise as a function. So the expression

(delay b)
really just means
(lambda () b)

We use the promised expression as the body of a function with no arguments. (A function with no argu-
ments is called a thunk.)

Once we have this mechanism, we can use ordinary functions to redeem our promises: (define (force
promise) (promise)) and now we can write the selectors for streams: (define (stream-car stream) (car stream))
(define (stream-cdr stream) (force (cdr stream)))

Notice that forcing a promise doesn’t compute the entire rest of the job at once, necessarily. For example, if
we take our range [2,999] and ask for its tail, we don’t get a list of 997 values. All we get is a pair whose
car is 3 and whose cdr is a new promise to compute [4,999] later. The name for this whole technique is
lazy evaluation or call by need.

3.1 Reordering and Functional Programming

Suppose your program is written to include the following sequence of steps:

(set! x 2)
(set! yv (+ x 3))

(set! x 7)

Now suppose that, because we’re using some form of lazy evaluation, the actual sequence of events is
reordered so that the third set! happens before the second one. We’ll end up with the wrong value for
y. This example shows that we can only get away with below-the-line reordering if the above-the-line
computation is functional.

(Why isn’t it a problem with let? Because let doesn’t mutate the value of one variable in one environ-
ment. It sets up a local environment, and any expression within the body of the let has to be computed
within that environment, even if things are reordered.)

3.2 Memoization of Streams

Delay is really slightly more complicated than what’s shown above. It returns a procedure of no arguments
that memoizes the promise; the expression given as delay’s argument is evaluated only the first time this
promise is forced; after that, the value is remembered and reused. This is another reason why streams are a
functional-only technique; any mutation operation in a promise will only happen once even if you cash in
the promise repeatedly. Thus, side effects are not remembered.



Uses of Streams

4.1 Infinite Streams

Think about the plain old list function:

(define (range from to)
(if (> from to)
()

(cons from (range (+ from 1) to)) ))
When we change this to a stream function, we change very little in the appearance of the program:

(define (stream-range from to)
(if (> from to)
THE-EMPTY-STREAM
(cons—-STREAM from
(stream-range (+ from 1) to)) ))

but this tiny above-the-line change makes an enormous difference in the actual behavior of the program.
Now let’s cross out the second argument and the end test:

(define (stream-range from)
(cons—stream from
(stream-range (+ from 1))) )

This is an enormous above-the-line change! We now have what looks like a recursive function with no base
case—an infinite loop. And yet there is hardly any difference at all in the actual behavior of the program.
The old version computed a range such as [2,999] by constructing a single pair whose car is 2 and whose
cdr is a promise to compute [3,999] later. The new version computes a range such as [2, oo] by constructing
a single pair whose car is 2 and whose cdr is a promise to compute [3, oo] later!

This amazing idea lets us construct even some pretty complicated infinite sets, such as the set of all the
prime numbers.

4.2 Time-Varying Information

Functional programming works great for situations in which we are looking for a timeless answer to some
question. That is, the same question always has the same answer regardless of events in the world. We
invented OOP because functional programming didn’t let us model changing state. But with streams we
can model state functionally. We can say:

(define (user—-stream)
(cons—-stream (read) (user—-stream)) )

and this gives us the stream of everything the user is going to type from now on. Instead of using local
state variables to remember the effect of each thing the user types, one at a time, we can write a program
that computes the result of the (possibly infinite) collection of user requests all at once! This feels really
bizarre, but it does mean that purely functional programming languages can handle user interaction. We
don’t need OOP to do it.



4.3 Information Theory

Near the end of class today, I spoke about Information Theory. The key idea in most treatments of Informa-
tion Theory is the measure of entropy, which deals with being able to quantify the amount of information in
a signal (a stream, if you will). Interested parties can read more at: http://en.wikipedia.org/wiki/
Entropy_ (information_theory)

Information Theory is really applicable to today’s world, because we're rapidly moving towards a point
where we are able to transmit vast amounts of data across the world. To some degree, our ideas of Data
Abstraction deal with this, in that the idea is that underlying every form of communication, we can simply
encode things as nothing but ones and zeros. With that idea, learning this topic empowers us to be able to
figure out what the smallest amount of stuff we can transmit that still contains the maximum amount of
"information" is.

The demo I did in class is here: http://math.ucsd.edu/~crypto/java/ENTROPY/. I finished the
sentence when I got back to my office, and the final result is attached. What 1.8 bits means, is that with ~2
bits (00, 01, 10, 11), we can basically encode a message with the same amount of information as a standard
English sentence (assuming the sentence is "normal") in the same length. This is LOSSLESS compression.
In other words, you can get back *exactly* the same message that you put in.


http://en.wikipedia.org/wiki/Entropy_(information_theory)
http://en.wikipedia.org/wiki/Entropy_(information_theory)
http://math.ucsd.edu/~crypto/java/ENTROPY/

	Motivation
	Overview
	Implementation 
	Reordering and Functional Programming 
	Memoization of Streams 

	Uses of Streams
	Infinite Streams
	Time-Varying Information
	Information Theory


