
CLIENT-SERVER PARADIGM, MAPREDUCE 22
GEORGE WANG

gswang.cs61a@gmail.com
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

July 29, 2010

1 Threads, Callbacks

(define (im-server-start)
;;;Start the server.
;
;Set! server-socket variable
;Set thunk for handling handshake with new client
;
(format logging "~%Server starting...~%")
(set! server-socket (make-server-socket))
(format #t "Server IP address: ~A, server port: ~A~%"
(get-ip-address-as-string)
(socket-port-number server-socket))
(when-socket-ready server-socket

(lambda ()
(begin

(format logging "New client connecting.~%")
(handshake (socket-dup server-socket)))))

(format logging "(im-server-start) done.~%~%")
’okay)

2 The 3-Way Handshake

(define (handshake sock)
;;;Handle the three-way handshake with a client.
;
;Handshaking should go as follows:

1



;client->server:
; request from CLIENT to server with request "hello" and data nil
;server->client:
; request from server to CLIENT with request "welcome" and data nil
;client->server:
; request from CLIENT to server with request "thanks" and data nil
;
;;Accept the socket connection
(socket-accept-connection sock)
(format logging "Connection accepted for ~A...~%" sock)
(let* ((port-from-client (socket-input sock))

(port-to-client (socket-output sock))
(req (get-request port-from-client)))

(if (not req)
(socket-shutdown sock #f)
(begin

(format logging "Request received: ~S~%" req)

;; Check message is "hello".
(cond ((not (equal? ’hello (request-action req)))

(format #t "Bad request from client: ~S"
req)
(socket-shutdown sock #f))
((member (request-src req) (get-clients-list))
;; name already exists, send "sorry" to client
(format logging "Sending ’sorry’ to client~%")
(send-request (make-request ’server

(request-src req)
’sorry
nil)

port-to-client)
(format #t "Name ~A already exists."
(request-src req))
(socket-shutdown sock #f))
(else
;;Send "welcome" message back.
(format logging "Sending welcome message.~%")
(if (not

(send-request (make-request ’server
(request-src req)
’welcome
nil)

port-to-client))
(socket-shutdown sock #f)
(begin

;; Check response is "thanks"
(set! req (get-request port-from-client))
(if (not req)

(socket-shutdown sock #f)
(begin

2



(format logging "Response received: ~S~%" req)
(if (not (equal? ’thanks (request-action req)))

(begin (format #t "Bad response from client: ~S" req)
(socket-shutdown sock #f))
(begin

;; Finally, we can register the client
(format logging "~A has logged on.~%"
(request-src req))
(register-client (request-src req)

sock)
(format logging "Finished handshake~%") )) ) ))))) )))
’okay)

3 MapReduce

Here’s the diagram of mapreduce again:

ACCUMULATEMAP

kv

kv

kv

kv

kv

kv

key
REDUCE

key

REDUCE

REDUCEkey

key

key

key

(mapreduce f1 f2 base dataname)

f1
f2

()

MAP

MAP

MAP

MAP

SORT

value
value
value

value
value

value

result

result

result

f1 f2

(accumulate f2 base (map f1 data))

The seemingly unpoetic names f1 and f2 serve to remind you of two things: f1 (the mapper) is used
before f2 (the reducer), and f1 takes one argument while f2 takes two arguments (just like the functions
used with ordinary map and accumulate respectively).

mapper: kv-pair→list-of-kv-pairs

reducer: value, partial-result → result

All data are in the form of key-value pairs. Ordinary map doesn’t care what the elements of the data
list argument are, but mapreduce works only with data each of which is a key-value pair. In the Scheme
interface to the distributed filesystem, a file is a stream. Every line of the file is a key-value pair whose key
is the filename and whose value is a list of words, representing the text of the line.

(Actually, “a file is a stream” is a slight handwave. The STk running on the parallel cluster has special
versions of stream-car, etc., that accept both ordinary streams and special file streams that are really
pointers to data in the distributed file system, but that simulate the behavior of streams. So if you print one
of these special streams directly, rather than using show-stream, you’ll see something that doesn’t look
familiar.)

Each processor runs a separate stream-map. The overlapping squares at the left of the mapreduce picture
represent an entire stream. (How is a large distributed file divided among map processes? It doesn’t really
matter, as far as the mapreduce user is concerned; mapreduce tries to do it as efficiently as possible given

3



the number of processes and the location of the data in the filesystem.) The entire stream is the input to a
map process; each element of the stream (a kv-pair) is the input to your mapper function f1.

For each key-value pair in the input stream, the mapper returns a list of key-value pairs. In the simplest
case, each of these lists will have one element; the code will look something like

(define (my-mapper input-kv-pair)
(list (make-kv-pair ... ...)))

The interface requires that you return a list to allow for the non-simplest cases:

(1) Each input key-value pair may give rise to more than one output key-value pair. For example, you may
want an output key-value pair for each word of the input file, whereas the input key-value pair represents
an entire line:

(define (my-mapper input-kv-pair)
(map (lambda (wd) (make-kv-pair ... ...))

(kv-value input-kv-pair)))

(2) There are three commonly used higher order functions for sequential data, map, accumulate/reduce,
and filter. The way mapreduce handles the sort of problem for which filter would ordinarily be
used is to allow a mapper to return an empty list if this particular key-value pair shouldn’t contribute to
the result:

(define (my-mapper input-kv-pair)
(if ...

(list input-kv-pair)
’()))

Of course it’s possible to write mapper functions that combine these three patterns for more complicated
tasks.

The keys in the kv-pairs returned by the mapper need not be the same as the key in the input kv-pair.

Instead of one big accumulation, there’s a separate accumulation of values for each key. The non-parallel
computation in the left half of the picture has two steps, a map and an accumulate. But the mapreduce
computation has three steps; the middle step sorts all the key-value pairs produced by all the mapper pro-
cesses by their keys, and combines all the kv-pairs with the same key into a single aggregate structure,
which is then used as the input to a reduce process.

This is why the use of key-value pairs is important! If the data had no such structure imposed on them, there
would be no way for us to tell mapreduce which data should be combined in each reduction.

Although it’s shown as one big box, the sort is also done in parallel; it’s a “bucket sort,” in which each
map process is responsible for sending each of its output kv-pairs to the proper reduce process. (Don’t be
confused; your mapper function doesn’t have to do that. The mapreduce program takes care of it.)

Since all the data seen by a single reduce process have the same key, the reducer doesn’t deal with keys
at all. This is important because it allows us to use simple reducer functions such as +, *, max, etc. The
Scheme interface to mapreduce recognizes the special cases of cons and cons-stream as reducers and
does what you intend, even though it wouldn’t actually work without this special handling, both because
cons-stream is a special form and because the iterative implementation of mapreduce would do the
combining in the wrong order.

In the underlying mapreduce software, each reduce process leaves its results in a separate file, stored
on the particular processor that ran the process. But the Scheme interface to mapreduce returns a single
value, a stream that effectively stream-appends the results from all the reduce processes.

4



Running mapreduce: The mapreduce function is not available on the standard lab machines. You must
connect to the machine that controls the parallel cluster. To do this, from the Unix shell you say this:

ssh icluster1.eecs.berkeley.edu

If you’re at home, rather than in the lab, you’ll have to provide your class login to the ssh command:

ssh cs61a-XY@icluster.eecs.berkeley.edu

replacing XY above with your login account. Ssh will ask for your password, which is the same on the
parallel cluster as for your regular class account. Once you are logged into icluster1, you can run stk
as usual, but mapreduce will be available:

(mapreduce mapper reducer reducer-base-case filename-or-special-stream)

The first three arguments are the mapper function for the map phase, and the reducer function and starting
value for the reduce phase. The last argument is the data input to the map, but it is restricted to be either
a distributed filesystem folder, which must be one of these:

"/beatles-songs" This one is small and has all Beatles song names

"/gutenberg/shakespeare" The collected works of William Shakespeare

"/gutenberg/dickens" The collected works of Charles Dickens

"/sample-emails" Some sample email data for the homework

"/large-emails" A much larger sample email dataset. Use this only if you’re willing to wait a while.

(the quotation marks above are required), or the stream returned by an earlier call to mapreduce. (Streams
you make yourself with cons-stream, etc., can’t be used.) Some problems are solved with two mapreduce
passes, like this:

(define intermediate-result (mapreduce ...))
(mapreduce ... intermediate-result)

(Yes, you could just use one mapreduce call directly as the argument to the second mapreduce call, but
in practice you’ll want to use show-stream to examine the intermediate result first, to make sure the first
call did what you expect.)

Here’s a sample. We provide a file of key-value pairs in which the key is the name of a Beatles album and
the value is the name of a song on that album. Suppose we want to know how many times each word
appears in the name of a song:

(define (wordcount-mapper document-line-kv-pair)
(map (lambda (wd-in-line)

(make-kv-pair wd-in-line 1))
(kv-value document-line-kv-pair)))

(define wordcounts (mapreduce wordcount-mapper + 0 "/beatles-songs"))
(ss wordcounts)

The argument to wordcount-mapper will be a key-value pair whose key is an album name, and whose
value is a song name. (In other examples, the key will be a filename, such as the name of a play by Shake-
speare, and the value will be a line from the play.) We’re interested only in the song names, so there’s no
call to kv-key in the procedure. For each song name, we generate a list of key-value pairs in which the key
is a word in the name and the value is 1. This may seem silly, having the same value in every pair, but it
means that in the reduce stage we can just use + as the reducer, and it’ll add up all the occurrences of each
word.

5



You’ll find the running time disappointing in this example; since the number of Beatles songs is pretty
small, the same computation could be done faster on a single machine. This is because there is a significant
setup time both for mapreduce itself and for the stk interface. Since your mapper and reducer functions
have to work when run on parallel machines, your Scheme environment must be shipped over to each
of those machines before the computation begins, so that bindings are available for any free references in
your procedures. It’s only for large amounts of data (or long computations that aren’t data-driven, such as
calculating a trillion digits of π, but mapreduce isn’t really appropriate for those examples) that parallelism
pays off.

By the way, if you want to examine the input file, you can’t just say

(ss "/beatles-songs") ; NO

because a distributed filename isn’t a stream, even though the file itself is (when viewed by the stk interface
to mapreduce a stream. These filenames only work as arguments to mapreduce itself. But we can use
mapreduce to examine the file by applying null transformations in the map and reduce stages:

(ss (mapreduce list cons-stream the-empty-stream "/beatles-songs"))

The mapper function is list because the mapper must always return a list of key-value pairs; in this case,
map will call list with one argument and so it’ll return a list of length one.

Now we’d like to find the most commonly used word in Beatle song titles. There are few enough words so
that we could really do this on one processor, but as an exercise in parallelism we’ll do it partly in parallel.
The trick is to have each reduce process find the most common word starting with a particular letter. Then
we’ll have 26 candidates from which to choose the absolutely most common word on one processor.

(define (find-max-mapper kv-pair)
(list (make-kv-pair (first (kv-key kv-pair))

kv-pair)))
(define (find-max-reducer current so-far)

(if (> (kv-value current) (kv-value so-far))
current
so-far))

(define frequent (mapreduce find-max-mapper find-max-reducer
(make-kv-pair ’foo 0) wordcounts))

(ss frequent)
(stream-accumulate find-max-reducer (make-kv-pair ’foo 0) frequent)

This is a little tricky. In the wordcounts stream, each key-value pair has a word as the key, and the count
for that word as the value: (back . 3). The mapper transforms this into a key-value pair in which the
key is the first letter of the word, and the value is the entire input key-value pair: (b . (back . 3)). Each
reduce process gets all the pairs with a particular key, i.e., all the ones with the same first letter of the
word. The reducer sees only the values from those pairs, but each value is itself a key-value pair! That’s
why the reducer has to compare the kv-value of its two arguments.

As another example, here’s a way to count the total number of lines in all of Shakespeare’s plays:

(define will
(mapreduce (lambda (kv-pair)

(list (make-kv-pair ’line 1)))
+ 0 "/gutenberg/shakespeare"))

For each line in Shakespeare, we make exactly the same pair (line . 1). Then, in the reduce stage, all
the ones in all those pairs are added. But this is actually a bad example! Since all the keys are the same (the
word line), only one reduce process is run, so the counting isn’t done in parallel. A better way would be
to count each play separately, then add those results if desired. You’ll do that in lab.

6


	Threads, Callbacks
	The 3-Way Handshake
	MapReduce

