
LOGIC PROGRAMMING 25
GEORGE WANG, JONATHAN KOTKER

gswang.cs61a@gmail.com
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

August 4, 2010

1 Introduction

A computer does exactly what you tell it to do. This is one of the main reasons people get frustrated with
their code or with their computer: the computer is doing exactly what you asked it to do, which can be
entirely different from what you meant it to do. When mathematicians define, for example, the square root
of a real number, they don’t talk about how to find the square root; they talk about how the square root
of a number x is the positive number y such that the square of y is x. A&S gives an implementation in
pseudo-Scheme (pg. 22):

(define (sqrt x)
(the y (and (>= y 0)

(= (square y) x))))

We would like for the program above to work, but it does not quite work because we’re not telling the
computer how exactly to pick the y. We could potentially loop through all the possible integers and check
to see if they satisfy the condition, but at this point in this course, you can instantly tell that this method
is very inefficient. There are, of course, methods to find the square root of a number, such as Newton’s
method, but again, these methods tell the computer exactly how to find the square root of a number; they
don’t tell the computer what the square root of a number is.

Up until this point in the course, we have dealt with imperative programming, thinking about how to do
things. Today’s big idea is logic programming or declarative programming, thinking about what things are.
It is the biggest step we have taken away from expressing a computation in hardware terms. When we
discovered streams, we saw how to express an algorithm in a way that is independent of the order of
evaluation. Now, we are going to describe a computation in a way that has no (visible) algorithm at all!

1



2 Logic Evaluator

We are using a logic programming language that A&S implemented in Scheme. Because of that, the notation
is Scheme-like, i.e., full of lists. Standard logic languages like Prolog have somewhat different notations,
but the idea is the same.

All we do is assert facts:

> (load "~cs61a/lib/query.scm")
> (query)

;;; Query input:
(assert! (Jon likes omnom))

and ask questions about the facts:

;;; Query input:
(?who likes omnom)

;;; Query results:
(JON LIKES OMNOM)

Although the assertions and the queries take the form of lists, and so they look a little like Scheme programs,
they are not! There is no application of function to argument here; an assertion is just data. This is true even
though, for various reasons, it is traditional to put the verb (the relation) first:

(assert! (likes Jon omnom))

We will use that convention hereafter, but that makes it even easier to fall into the trap of thinking there is
a function called likes.

Notice that the language does an exact pattern match. As a result, if we add the following assertion:

;;; Query input:
(assert! (Jon likes om nom))

and ask questions about it:

;;; Query input:
(assert! (Jon likes ?what))

;;; Query results:
(JON LIKES OMNOM)

we only get the one assertion (so far) that matches the pattern exactly. To get all of the assertions, we use
Scheme’s dotted-tail notation, where everything after the dot is packed into one list.

;;; Query input:
(assert! (Jon likes . ?what))

;;; Query results:
(JON LIKES OM NOM)
(JON LIKES OMNOM)

Here, we are asking the query system for assertions with at least two words: jon likes.

Also notice that the system can only make assertions about what you tell it. Jon could like a ton of other
stuff, but the system will not tell you about them because it does not know about these likes. (Thankfully.)

2



3 Rules

As long as we just tell the system isolated facts, we can not get extraordinarily interesting replies. But we
can also tell it rules that allow it to infer one fact from another. For example, if we have a lot of facts like

(mother Eve Cain)

then we can establish a rule about grandmotherhood:

(assert! (rule (grandmother ?elder ?younger)
(and (mother ?elder ?mom)

(mother ?mom ?younger) )))

The rule says that the first part (the conclusion) is true if we can find values for the variables such that the
second part (the condition) is true. In other words, we make a logical inference – if the condition is true, then
we make a conclusion. In the above rule, we are encoding the logical inference that, if ?mom is the mother of
?younger, and if ?elder is the mother of ?mom, then it must be true that ?elder is the grandmother of
?younger.

Again, resist the temptation to try to do composition of functions!

(assert! (rule (grandmother ?elder ?younger) ;; WRONG!!!!
(mother ?elder (mother ?younger)) ))

mother is not a function, and you can not ask for the mother of someone, as this incorrect example tries to
do. Instead, as in the correct version above, you have to establish a variable (?mom) that has a value that
satisfies the two motherhood relationships we need.

In this language the words assert!, rule, and, or, and not have special meanings. Everything else is
just a word that can be part of assertions or rules.

Once we have the idea of rules, we can do real magic:

;;;;; In file cs61a/lectures/4.4/logic-utility.scm
(assert! (rule (append (?u . ?v) ?y (?u . ?z))

(append ?v ?y ?z)))
(assert! (rule (append () ?y ?y)))

(The actual online file uses a Scheme procedure aa to add the assertion. It is just like saying assert! to
the query system, but you say it to Scheme instead. This lets you load the file. Do not get confused about
this small detail—just ignore it.)

;;; Query input:
(append (a b) (c d e) ?what)
;;; Query results:
(APPEND (A B) (C D E) (A B C D E))

So far this is just like what we could do in Scheme. However...

;;; Query input:
(append ?what (d e) (a b c d e))
;;; Query results:
(APPEND (A B C) (D E) (A B C D E))
;;; Query input:
(append (a) ?what (a b c d e))
;;; Query results:
(APPEND (A) (B C D E) (A B C D E))

3



The new thing in logic programming is that we can run a “function” backwards! We can tell it the answer
and get back the question. But the real magic is...

;;; Query input:
(append ?this ?that (a b c d e))
;;; Query results:
(APPEND () (A B C D E) (A B C D E))
(APPEND (A) (B C D E) (A B C D E))
(APPEND (A B) (C D E) (A B C D E))
(APPEND (A B C) (D E) (A B C D E))
(APPEND (A B C D) (E) (A B C D E))
(APPEND (A B C D E) () (A B C D E))

We can use logic programming to compute multiple answers to the same question! Somehow it found all
the possible combinations of values that would make our query true.

How does the append program work? Compare it to the Scheme append:

(define (append a b)
(if (null? a)

b
(cons (car a) (append (cdr a) b)) ))

Like the Scheme program, the logic program has two cases: There is a base case in which the first argument
is empty. In that case the combined list is the same as the second appended list. And there is a recursive
case in which we divide the first appended list into its car and its cdr. We reduce the given problem into a
problem about appending (cdr a) to b. The logic program is different in form, but it says the same thing.
(Just as, in the grandmother example, we had to give the mother a name instead of using a function call,
here we have to give (car a) a name—we call it ?u.)

Unfortunately, this “working backwards” magic does not always work.

;;;;; In file cs61a/lectures/4.4/reverse.scm
(assert! (rule (reverse (?a . ?x) ?y)

(and (reverse ?x ?z)
(append ?z (?a) ?y) )))

(assert! (reverse () ()))

This works for (reverse (a b c) ?what) but not the other way around; it gets into an infinite loop.
We can also write a version that works only backwards:

;;;;; In file cs61a/lectures/4.4/reverse.scm
(assert! (rule (backward (?a . ?x) ?y)

(and (append ?z (?a) ?y)
(backward ?x ?z) )))

(assert! (backward () ()))

But it’s much harder to write one that works both ways. Even as we speak, logic programming fans are
trying to push the limits of the idea, but right now, you still have to understand something about the below-
the-line algorithm to be confident that your logic program won’t loop. We will talk about the below-the-line
implementation on Monday.

4


	Introduction
	Logic Evaluator
	Rules

