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To load the logic evaluator, say:

(load "~cs61a/lib/query.scm")

1 Review of Above the Line

Take a look at the following problem from Practice Final #1 in the Reader. One technique for writing some
logic programs is Translation:

(define (depth lst)
(if (not (pair? lst))

0
(max (+ 1 (depth (car lst))) (depth (cdr lst)))))

If we now do not allow composition of functions except for cons, car, cdr, and +:

(define (depth lst)
(if (not (pair? lst))

0
(let* ((dcar (depth (car lst)))

(dcdr (depth (cdr lst)))
(result (max (+ 1 dcar) dcdr)))
result)))

There’s now a natural translation towards Logic:
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2 Below the Line

Disclaimer: For the purposes of the final, you are by and large not responsible for any material in this
section. You are responsible for above the line, and this lecture serves to demystify that.

2.1 Introduction

Think about eval in the MC evaluator. It takes two arguments, an expression and an environment, and it
returns the value of the expression.

In logic programming, there’s no such thing as “the value of the expression.” What we’re given is a query,
and there may or may not be some number of variable bindings that make the query true. The query
evaluator qeval is analogous to eval in that it takes two arguments, something to evaluate and a context in
which to work. But the thing to evaluate is a query, not an expression; the context isn’t just one environment
but a whole collection of environments—one for each set of variable values that satisfy some previous
query. And the result returned by qeval isn’t a value. It’s a new collection of environments! It’s as if eval
returned an environment instead of a value.

2.2 Pattern Matching

For example, if we did something like:

(match ’(?a ’hello ?b) ’(well hello there))

We’d see that ?a is bound to well and ?b is bound to there. On the other hand, if we tried a query like:

(match ’(?a hello ?b) ’(yellow submarine)

We’d see that this would fail.

The details on how pattern matching is implemented is outside the scope of this course, not because it’s
hard, but because it’s not important. In short, use your human intuition, and you can see what the input
and outputs should be. Feel free to ignore the internals.

Let’s look at first the ’simple’ query. This is one that will bind a query variable with a value. In other
words, only one of the sides will have variables. The first step is to PATTERN MATCH the query against
every assertion in the data base. Pattern matching is just like a recursive equal? function, except that a
variable in the pattern (the query) matches anything in the assertion. But if the same variable appears more
than once, it must match the same thing each time. That’s why we need to keep an environment of matches
so far.

Just as every top-level Scheme expression is evaluated in the global environment, every top-level query is
evaluated in a stream containing a single empty environment. (No variables have been assigned values
yet.) Thus, a query looks something like:

2



QUERY:
(?x submarine)

ENV
ENV

?x = yellow

DATABASE:
(yellow submarine)

2.3 Complex Queries

The “collection” of environments we talked about is represented as a stream. That’s because there might be
infinitely many of them! We use the stream idea to reorder the computation; what really happens is that we
take one potential set of satisfying values and work it all the way through; then we try another potential set
of values. But the program looks as if we compute all the satisfying values at once for each stage of a query.

2.3.1 AND/OR

If we have a query like (and p q), what happens is that we recursively use qeval to evaluate p in the
empty-environment stream. The result is a stream of variable bindings that satisfy p. Then we use qeval to
evaluate q in that result stream! The final result is a stream of bindings that satisfy p and q simultaneously.
Remember, each query is capable of either adding a binding to a frame, or ’destroying’ the frame, if nothing
can be satisfied.

AND

P Q

If the query is (or p q) then we use qeval to evaluate each of the pieces independently, starting in both
cases with the empty-environment stream. Then we merge the two result streams to get a stream of bindings
that satisfy either p or q.
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OR

P

Q
MERGE

2.3.2 NOT

If the query is (not q), we can’t make sense of that unless we already have a stream of environments to
work with. That’s why we can only use not in a context such as (and p (not q)). We take the stream
of environments that we already have, and we stream-filter that stream, using as the test predicate the
function:

(lambda (env) (stream-null? (qeval q env)))

That is, we keep only those environments for which we can’t satisfy q.

NOT

P FILTER
EMPTY?

There’s one important thing to note about what not really means. It is very different in particular, from the
logical version of it. This version really deals with what can or cannot be deduced, as opposed to what is
or is not true. In particular, it assumes that everything that it doesn’t know about is false. You can see why
that would be dangerous.

That explains how qeval reduces compound queries to simple ones. Notice in each case, our complex
queries look outwardly the same as a simple query. We still input a stream of frames, as well as a database,
and we output a stream of frames with some operation done on them.

2.4 Unification

The next step is to match the query against the conclusions of rules. This is tricky because now there can
be variables in both things being matched. Instead of the simple pattern matching we have to use a more
complicated version called unification. (See the details in the text.) If we find a match, then we take the
condition part of the rule (the body) and use that as a new query, to be satisfied within the environment(s)
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that qeval gave us when we matched the conclusion. In other words, first we look at the conclusion to see
whether this rule can possibly be relevant to our query; if so, we see if the conditions of the rule are true.

For example, if we wish to do something like:

(unify (?x ?x) ((a ?y c) (a b ?z))

We’d obtain:

?x = (a b c)
?y = b
?z = c

That wasn’t bad. What about:

(unify (?x ?x) ((?y a ?w) (b ?v ?z))

Well...that’s a bit tougher.

?y = b
?v = a
?w = ?z
?x = (b a ?w)

The best way to think about this is that it does it’s best to merge two frames together. It’s a lot like solving
a linear system of equations.

But what about:

(unify (?x ?x) (?y (a . ?y))

Well, as humans, we can see:

?x = y
?y = (a a a a a ...)

Thus, the general case is harder. Basically, the program includes a check that will force the program to give
up in some cases.

2.5 Quirks

By giving up all the control over the flow, we also potentially create problems. We’ll see computation fail
in Above the Line Logic programs because of Below the Line implementation.

Which of the following 2 works? Why?

(rule (outranked-by ?s ?b)
(or (supervisor ?s ?b)

(and (supervisor ?s ?m)
(outranked-by ?m ?b))))

(rule (outranked-by ?s ?b)
(or (supervisor ?s ?b)

(and (outranked-by ?m ?b)
(supervisor ?s ?m))))

Now let’s look at more classical logic, and look at what I said earlier about not. Let’s look at the Greeks!

(Greek Socrates) (Greek Plato)
(Greek Zeus) (god Zeus)
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(rule (mortal ?x) (human ?x))
(rule (fallible ?x) (human ?x))

(rule (human ?x)
(and (Greek ?x) (not (god ?x))))

(rule (address ?x Olympus)
(and Greek ?x (god ?x)))

Again, let’s extend this to include perfect beings:

(rule (perfect ?x)
(and (not (mortal ?x))

(not (fallible ?x))))

Now:

(and (address ?x ?y)
(perfect ?x))

(and (perfect ?x)
(address ?x ?y))
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2.6 Example:

Here’s an example, partly traced:

;;; Query input:
(append ?a ?b (aa bb))
(unify-match (append ?a ?b (aa bb)) ; MATCH ORIGINAL QUERY

(append () ?1y ?1y) ; AGAINST BASE CASE RULE
()) ; WITH NO CONSTRAINTS

RETURNS: ((?1y . (aa bb)) (?b . ?1y) (?a . ()))
PRINTS: (append () (aa bb) (aa bb))

Since the base-case rule has no body, once we’ve matched it, we can print a successful result. (Before
printing, we have to look up variables in the environment so what we print is variable-free.)

Now we unify the original query against the conclusion of the other rule:

(unify-match (append ?a ?b (aa bb)) ; MATCH ORIGINAL QUERY
(append (?2u . ?2v) ?2y (?2u . ?2z)) ; AGAINST RECURSIVE RULE
()) ; WITH NO CONSTRAINTS

RETURNS: ((?2z . (bb)) (?2u . aa) (?b . ?2y) (?a . (?2u . ?2v)))
[call it F1]

This was successful, but we’re not ready to print anything yet, because we now have to take the body of
that rule as a new query. Note the indenting to indicate that this call to unify-match is within the pending
rule.

(unify-match (append ?2v ?2y ?2z) ; MATCH BODY OF RECURSIVE RULE
(append () ?3y ?3y) ; AGAINST BASE CASE RULE
F1) ; WITH CONSTRAINTS FROM F1

RETURNS: ((?3y . (bb)) (?2y . ?3y) (?2v . ()) [plus F1])
PRINTS: (append (aa) (bb) (aa bb))
(unify-match (append ?2v ?2y ?2z) ; MATCH SAME BODY

(append (?4u . ?4v) ?4y (?4u . ?4z)) ; AGAINST RECURSIVE RULE
F1) ; WITH F1 CONSTRAINTS

RETURNS: ((?4z . ()) (?4u . bb) (?2y . ?4y) (?2v . (?4u . ?4v))
[plus F1]) [call it F2]
(unify-match (append ?4v ?4y ?4z) ; MATCH BODY FROM NEWFOUND MATCH

(append () ?5y ?5y) ; AGAINST BASE CASE RULE
F2) ; WITH NEWFOUND CONSTRAINTS

RETURNS: ((?5y . ()) (?4y . ?5y) (?4v . ()) [plus F2])
PRINTS: (append (aa bb) () (aa bb))
(unify-match (append ?4v ?4y ?4z) ; MATCH SAME BODY

(append (?6u . ?6v) ?6y (?6u . ?6z)) ; AGAINST RECUR RULE
F2) ; SAME CONSTRAINTS

RETURNS: () ; BUT THIS FAILS
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