
ANALYZING EVALUATOR 28
GEORGE WANG

gswang.cs61a@gmail.com
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

August 10, 2010

To load the analying evaluator, say:

(load "~cs61a/lib/analyze.scm")

1 Overview: Separating Analysis from Execution

Eval takes two arguments, an expression and an environment. Of those, the expression argument is (obvi-
ously!) the same every time we revisit the same expression, whereas the environment will be different each
time. For example, when we compute (fact 3) we evaluate the body of fact in an environment in which
num has the value 3. That body includes a recursive call to compute (fact 2), in which we evaluate the
same body, but now in an environment with num bound to 2.

Our plan is to look at the evaluation process, find those parts which depend only on exp and not on env,
and do those only once. The procedure that does this work is called analyze.

What is the result of analyze? It has to be something that can be combined somehow with an environment
in order to return a value. The solution is that analyze returns a procedure that takes only env as an
argument, and does the rest of the evaluation.

Instead of

(eval exp env) ==> value

we now have

1. (analyze exp) ==> exp-procedure
2. (exp-procedure env) ==> value

When we evaluate the same expression again, we only have to repeat step 2. What we’re doing is akin to
memoization, in that we remember the result of a computation to avoid having to repeat it. The difference
is that now we’re remembering something that’s only part of the solution to the overall problem, instead of
a complete solution.

1



We can duplicate the effect of the original eval this way:

(define (eval exp env)
((analyze exp) env))

2 Motivation

Suppose we’ve defined the factorial function as follows:

(define (fact num)
(if (= num 0)

1
(* num (fact (- num 1)))))

What happens when we compute (fact 3)?

eval (fact 3)
self-evaluating? ==> #f if-alternative ==> (* num (fact (- num 1)))
variable? ==> #f eval (* num (fact (- num 1)))
quoted? ==> #f self-evaluating? ==> #f
assignment? ==> #f ...
definition? ==> #f list-of-values (num (fact (- num 1)))
if? ==> #f ...
lambda? ==> #f eval (fact (- num 1))
begin? ==> #f ...
cond? ==> #f apply <procedure fact> (2)
application? ==> #t eval (if (= num 0) ...)
eval fact

self-evaluating? ==> #f
variable? ==> #t
lookup-variable-value ==> <procedure fact>
list-of-values (3)

eval 3 ==> 3
apply <procedure fact> (3)

eval (if (= num 0) ...)
self-evaluating? ==> #f
variable? ==> #f
quoted? ==> #f
assignment? ==> #f
definition? ==> #f
if? ==> #t

eval-if (if (= num 0) ...)
if-predicate ==> (= num 0)

eval (= num 0)
self-evaluating? ==> #f
...

Four separate times, the evaluator has to examine the procedure body, decide that it’s an if expression, pull
out its component parts, and evaluate those parts (which in turn involves deciding what type of expression
each part is).

This is one reason why interpreted languages are so much slower than compiled languages: The interpreter
does the syntactic analysis of the program over and over again. The compiler does the analysis once, and

2



the compiled program can just do the part of the computation that depends on the actual values of variables.

3 The Implementation Details.

Analyze has a structure similar to that of the original eval:

(define (eval exp env) (define (analyze exp)
(cond ((self-evaluating? exp) (cond ((self-evaluating? exp)

exp) (analyze-self-eval exp))
((variable? exp) ((variable? exp)
(lookup-var-val exp env)) (analyze-var exp))

... ...
((foo? exp) (eval-foo exp env)) ((foo? exp) (analyze-foo exp))
...)) ...))

The difference is that the procedures such as eval-if that take an expression and an environment as argu-
ments have been replaced by procedures such as analyze-if that take only the expression as argument.

How do these analysis procedures work? As an intermediate step in our understanding, here is a version
of analyze-if that exactly follows the structure of eval-if and doesn’t save any time:

(define (eval-if exp env)
(if (true? (eval (if-predicate exp) env))

(eval (if-consequent exp) env)
(eval (if-alternative exp) env)))

(define (analyze-if exp)
(lambda (env)

(if (true? (eval (if-predicate exp) env))
(eval (if-consequent exp) env)
(eval (if-alternative exp) env))))

This version of analyze-if returns a procedure with env as its argument, whose body is exactly the same
as the body of the original eval-if. Therefore, if we do:

((analyze-if some-if-expression) some-environment)

the result will be the same as if we’d said

(eval-if some-if-expression some-environment)

in the original metacircular evaluator.

But we’d like to improve on this first version of analyze-if because it doesn’t really avoid any work. Each
time we call the procedure that analyze-if returns, it will do all of the work that the original eval-if
did.

The first version of analyze-if contains three calls to eval. Each of those calls does an analysis of an
expression and then a computation of the value in the given environment. What we’d like to do is split
each of those eval calls into its two separate parts, and do the first part only once, not every time:

(define (analyze-if exp)
(let ((pproc (analyze (if-predicate exp)))

(cproc (analyze (if-consequent exp)))
(aproc (analyze (if-alternative exp))))

(lambda (env)
(if (true? (pproc env))

3



(cproc env)
(aproc env)))))

In this final version, the procedure returned by analyze-if doesn’t contain any analysis steps. All of the
components were already analyzed before we call that procedure, so no further analysis is needed.

The biggest gain in efficiency comes from the way in which lambda expressions are handled. In the original
metacircular evaluator, leaving out some of the data abstraction for clarity here, we have:

(define (eval-lambda exp env)
(list ’procedure exp env))

The evaluator does essentially nothing for a lambda expression except to remember the procedure’s text
and the environment in which it was created. But in the analyzing evaluator we analyze the body of the
procedure; what is stored as the representation of the procedure does not include its text! Instead, the evalua-
tor represents a procedure in the metacircular Scheme as a procedure in the underlying Scheme, along with
the formal parameters and the defining environment.

3.1 Question:

The analyzing evaluator turns an expression such as:

(if A B C)

into a procedure

(lambda (env)
(if (A-execution-procedure env)

(B-execution-procedure env)
(C-execution-procedure env)))

This may seem like a step backward; we’re trying to implement if and we end up with a procedure that
does an if. Isn’t this an infinite regress?

4 Conclusion2

The syntactic analysis of expressions is a large part of what a compiler does. In a sense, this analyzing
evaluator is a compiler! It compiles Scheme into Scheme, so it’s not a very useful compiler, but it’s really not
that much harder to compile into something else, such as the machine language of a particular computer.

A compiler whose structure is similar to this one is called a recursive descent compiler. Today, in practice,
most compilers use a different technique (called a stack machine) because it’s possible to automate the
writing of a parser that way. (I mentioned this earlier as an example of data-directed programming.) But if
you’re writing a parser by hand, it’s easiest to use recursive descent.

2Fun Fact. This lecture is the last technical section, so it’s a conclusion in a meta sense too!

4


	Overview: Separating Analysis from Execution
	Motivation
	The Implementation Details.
	Question:

	ConclusionFun Fact. This lecture is the last technical section, so it's a conclusion in a meta sense too!

