
ASYMPTOTIC ANALYSIS 4
GEORGE WANG

gswang.cs61a@gmail.com
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

June 24, 2010

1 Review from Last Lecture

1.1 CS Illustrated

Functions as Arguments: http://csillustrated.berkeley.edu/PDFs/functions-as-data.pdf.

1.2 Procedures We Learned2

lambda
let
keep

2 Motivation

Okay! We’re moving from talking about functions to kind of mentally taking a few steps back and talking
about how to talk about functions. In particular, although most of this course we’re focused on writing
programs that work, we’ll be talking about being able to judge the efficiency of a program today and to-
morrow.

First, let’s think about this problem. The obvious way to test the quality of a program is to just run the
darn thing, right? Just break out a stopwatch, and set the timer, and see how long it takes to run. But the
problem with this is to think of all the constraints of reality we’ve talked about. What if you have other
programs running on your computer in the background? What if your CPU kind of sucks, and it’s really
old? Well, what we want to do, is divorce the hardware that you’re running these programs on with the
abstract software programs that you are writing.

2See Lecture 3 notes for a more detailed treatment, including syntax.

1

http://csillustrated.berkeley.edu/PDFs/functions-as-data.pdf
http://inst.eecs.berkeley.edu/~cs61a/su10/lectures/lecture3.pdf


2.1 An Example4

Suppose you’re writing a program to manage the inventory for a retail store. Suppose that it takes 10,000ms
to load the initial inventory, and 10ms to process each transaction.

Well, if we’re talking about a small number of transactions, say < 1000, then it’s pretty straightforward
to see that the initial load time is what takes a long time. However, note that we’re only talking about 20
seconds total here. We don’t really care about the differences here when it’s not such a big deal.

However, if we’re talking about a large number of transactions, say > 1, 000, 000, then the initial load time
becomes massively outweighed by the time per transaction. For comparison, with 1 million transactions,
the time to process the transactions is about 3 hours, whereas the 10 second load time really doesn’t matter
much.

Thus, whatever we use to think about runtimes of programs must be more focused on large problems, and less
focused on smaller problems.

3 Big-O Notation

Essentially, we’re looking for ways to divide up runtimes of functions. It’s a lot like boxing. You have
featherweights, welterweights, and all the way up to super heavyweights. The idea is that although within
each class you have variability, you have huge differences between classes than within classes.

This concept can be a little tough to understand, so I’m going to try to explain it 4 ways. As long as you get
one of them, you should be okay. You will need to be able to classify functions into a specific class, as we’ll
explain in a bit. The big idea of big O is that it is an upper bound.

3.1 An Intuitive Definition

Hi, I’m George, I’m not all that fast. I get to race Usain Bolt, who does happen to be very fast. What if we
start imposing handicaps?

What if for every n meters I run, he has to run 1.5n meters? Well, if Usain Bolt is twice as fast as me, then it
doesn’t matter what n is. I’ll never win!

But what about a different handicap? For every n meters that I run, Usain Bolt has to run n2 meters. Maybe
he can beat me if n is small, like say 3 or less, but if n is big, say 100, he has no chance. This is because he’s
running 10km to my 100m.

Thus, we’re talking about running very far. If the handicap allows me to win at very far distances, than the
function for my handicap fits in big-O of the bigger handicap.

3.2 The Algebraic Definition

Let f and g be functions. f ∈ O (g) if and only if there exists c and N such that for all n > N , cf (n) < g (n).

Let’s look at this. Basically, this is saying that even if you blow up f by multiplying it by a million, we can
pick an N big enough after which it doesn’t matter.

Again, looking at our racing example, let’s try this. f (n) = n. g (n) = n2. Let’s pick c = 10 and N = 1, 000.
Well, we can see that 10f (1000) = 10 × 1000 = 10, 000, but g(1000) = 1, 000, 000. Thus, we’ve found the
constants c and N to make this work. Thus, we can say f ∈ O (g).

4This section adapted from Jonathan Shewchuk’s lecture notes.

2



3.3 The Graphical Definition

Let’s look at this graphically.

Note that although there’s a region during which the green line is lower than the blue line, after some point,
the blue line is going to be always less than the green line. Here, we can say that x ∈ O

(
x2

)
. And so long as

f is less than g for some region to the right of some point, we can say that f ∈ O (g).

3.4 The Calculus Definition

Ever heard of the ratio test? It deals with whether something converges or not, right? We can adapt it
to test whether some things are bigger than other things. Essentially, we can say f ∈ O (g) if and only
if lim
n→∞

f(n)
g(n) = C, where C is some constant, including 0.

4 Big Omega and Big Theta

4.1 Big Omega

We said that big O is the upper bound. There turns out to be something that means a lower bound, it’s
called Omega, written Ω. If f ∈ Ω (g), then g ∈ O (f). Get it? In other words, if f is always bigger than g
past a point, then conversely, g is always smaller than f past a point.

It’s strict definition is written:

Let f and g be functions. f ∈ Ω (g) if and only if there exists c and N such that for all n > N , f (n) > cg (n).

Notice how I flipped the greater-than sign for this?

3



4.2 Big Theta

Okay, so this should be coming. You have an upper bound, and you have a lower bound. Can we get an
exact bound? Turns out, we can! If f ∈ O (g) AND g ∈ O (f), then f ∈ Θ (g) and g ∈ Θ (f). The way to
think about them is that up to a constant factor, f (n) and g (n) are equal.

5 Why This Matters

Why don’t we care about small values of n? Because for small inputs, your program will be fast enough
anyway. Let’s say one program is 1000 times faster than another, but one takes a millisecond and the other
takes a second. Big deal.

Why don’t we care about constant factors? Because for large inputs, the constant factor will be drowned
out by the order of growth—the exponent in the O

(
xi
)

notation. Here is an example taken from the book
Programming Pearls by Jon Bentley (Addison-Wesley, 1986). He ran two different programs to solve the
same problem. One was a fine-tuned program running on a Cray supercomputer, but using an Θ

(
n3

)
algorithm. The other algorithm was run on a Radio Shack microcomputer, so its constant factor was several
million times bigger, but the algorithm was Θ (N). For small n the Cray was much faster, but for small n
both computers solved the problem in less than a minute. When n was large enough for the problem to
take a few minutes or longer, the Radio Shack computer’s algorithm was faster.

;;;;; In file cs61a/lectures/1.2/bentley
t1(N) = 3n3 t2(N) = 19,500,000n

N CRAY-1 Fortran TRS-80 Basic
10 3.0 microsec 200 millisec

100 3.0 millisec 2.0 sec
1000 3.0 sec 20 sec
10000 49 min 3.2 min

100000 35 days (est.) 32 min
1000000 95 yrs (est.) 5.4 hrs

6 Common Functions6

Function Common Name Commonly found in
O (1) constant Searching

is a subset of O (log n) logarithmic Searching
is a subset of O (

√
n) root-n

is a subset of O (n) linear Searching, Sorting
is a subset of O (n log n) n log n Sorting
is a subset of O

(
n2

)
quadratic Sorting

is a subset of O
(
n3

)
cubic Matrix Multiplication

is a subset of O (2n) exponential NP
is a subset of O (en) exponential NP

6This section adapted from Jonathan Shewchuk’s lecture notes.

4



7 Efficiency Improvements8

;;;;; In file cs61a/lectures/1.2/pascal.scm
(define (pascal row col)

(cond ((= col 0) 1)
((= col row) 1)
(else (+ (pascal (- row 1) (- col 1))

(pascal (- row 1) col) ))))

This program is very simple, but it takes Θ (2n)time! Try some examples. Row 18 is already getting slow.

Instead we can write a more complicated program that, on the surface, does a lot more work because it
computes an entire row at a time instead of just the number we need:

;;;;; In file cs61a/lectures/1.2/pascal.scm
(define (new-pascal row col)

(nth col (pascal-row row)) )
(define (pascal-row row-num)

(define (iter in out)
(if (empty? (bf in))

out
(iter (bf in) (se (+ (first in) (first (bf in))) out)) ))

(define (next-row old-row num)
(if (= num 0)

old-row
(next-row (se 1 (iter old-row ’(1))) (- num 1)) ))

(next-row ’(1) row-num) )

This was harder to write, and seems to work harder, but it’s far faster because it’s Θ
(
n2

)
. The reason is

that the original version computed lots of entries repeatedly. The new version computes a few unnecessary
ones, but it only computes each entry once. Moral: When it really matters, think hard about your algorithm
instead of trying to fine-tune a few microseconds off the obvious algorithm.

Note: Programming project 1 is assigned tomorrow, and due Friday, July 2nd, at noon. Although you have
slip hours, I strongly recommend you reserve them for later projects.

8For those using Brian Harvey’s notes, we’re skipping recursive v. iterative processes

5


	Review from Last Lecture
	CS Illustrated 
	Procedures We LearnedSee Lecture 3 notes for a more detailed treatment, including syntax.

	Motivation
	An ExampleThis section adapted from Jonathan Shewchuk's lecture notes.

	Big-O Notation
	An Intuitive Definition
	The Algebraic Definition
	The Graphical Definition
	The Calculus Definition

	Big Omega and Big Theta
	Big Omega
	Big Theta

	Why This Matters
	Common FunctionsThis section adapted from Jonathan Shewchuk's lecture notes.
	Efficiency ImprovementsFor those using Brian Harvey's notes, we're skipping recursive v. iterative processes

