
PAIRS AND LISTS 6
GEORGE WANG

gswang.cs61a@gmail.com
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

June 29, 2010

1 Pairs

1.1 Overview

To represent data types that have component parts (like the rank and suit of a card), you have to have some
way to aggregate information. Many languages have the idea of an array that groups some number of
elements. In Lisp the most basic aggregation unit is the PAIR—two things combined to form a bigger thing.
If you want more than two parts you can hook a bunch of pairs together. We’ll discuss this more later.

The constructor for pairs is cons; the selectors are car and cdr.

CAR CDR

PAIR

The book uses pairs to represent many different abstract data types: rational numbers (numerator and
denominator), complex numbers (real and imaginary parts), points (x and y coordinates), intervals (low
and high bounds), and line segments (two endpoints).

1

rational

denominatornumerator

interval

highlow

complex

imaginaryreal

point

yx

segment

point2point1

segment

yxyx

Notice that in the case of line segments we think of the representation as one pair containing two points,
not as three pairs containing four numbers. That’s what it means to respect a data abstraction.

1.2 Exercise: cons

Construct the following diagram using cons.

64

5

3

2

1.3 Naming

So why the heck is it called car and cdr? Well, turns out that a long time ago, one of the earliest machines,
the IBM 704, the machine to implement them had a memory which contained something called a address
register and a decrement register. Therefore, car stands for the Contents of Address Register, and cdr stands
for Contents of Decrement Register.

But there’s a very useful reason to using things like this, and it’s used when we are going to combine our
pairs into bigger pairs. The important thing is that we can combine car and cdr in a useful way, such that
we get something like caddar which is the (car (cdr (cdr (car ...)))) of something. How do
you pronounce that out? Well, load ~cs61a/lib/prounounce.scm, and it will tell you. This is the most
important part of Scheme! If you want to be a lisp wizard, you have to be able to say it right.

1.4 Exercise: Pair Accessors

Explain that if a points to the upper left of the diagram above, how to extract each of the different numbers.

2

2 Sequences: Lists

List Operations

cons, append, list , car, cdr

Well, building things like this is rather dull. What if we want to represent a sequence of things? We
may want to use a data structure called a list. Although these typically contain data that is very similar,
they don’t have to be. You are used to sequential data structures in the form of sentences, and these are
essentially the same thing. However, these have a few more bits of power.

1. They can contain other lists.

2. They can contain Procedures.

3. They can contain anything.

And they are elegantly defined. They are recursively defined:

A list is a pair whose cdr is a list. An empty list is a list.

2.1 Implementation

Let’s look at their implementation, before moving on to the selectors and constructors. The basic imple-
mentation is straightforward. It’s using the pairs we’re used to. Essentially, you just connect together a
bunch of pairs together via the cdr, and at the very end, affix an empty list. Typically, in a flat list, the car
contains all the information, while the cdr is another list. This is analogous to first and butfirst.

2.2 Selectors

It’s just car and cdr. The reason for this is that a list is just a pair. (Note, the converse is not true, a pair
is not necessarily a list.) Therefore, when we’re manipulating a list, it’s possible to think about it as we’re
merely manipulating the first pair.

2.3 Constructors

2.3.1 cons

This is the simple one. We know that we can make a pair with cons, so if we want to add an element to the
beginning of a list, we just use cons.

> (cons ’the ’(quick brown fox jumps over the lazy dog))
(the quick brown fox jumps over the lazy dog)

The one thing we want to be careful about is that we must remember that cons is not unique to lists.
Therefore, if we cons together a list and a list, we do not get a flat list, we get a deep list, as follows. Note
that we will study deep lists in detail later this week.

> (cons ’(the) ’(quick brown fox jumps over the lazy dog))
((the) quick brown fox jumps over the lazy dog)

3

This turns out to be the most useful one, because most of the time when we’re doing a recursive transfor-
mation, we’re building a list one pair at a time. Let’s look at map, the list analogy to every.

(define (map fn seq)
(if (null? seq)

’()
(CONS (fn (car seq))

(map fn (cdr seq)))))

2.3.2 append

This procedure takes two lists as its argument and returns a new list that is a copy of the old one with the
last pair pointing to the new list. One student described this to me as basically writing them next to each
other and then just erasing the two parens in between them. We will only deal with this procedure as being
applied to two lists.

> (append ’(the quick brown fox) ’(jumps over the lazy dog))
(the quick brown fox jumps over the lazy dog)

It’s most useful when combining results from multiple recursive calls, each of which returns a subset of the
overall answer; you want to take the union of those sets, and that’s what append does.

2.3.3 list

This is the easiest to understand, but unfortunately, also the easiest to get wrong. In short, it creates spine
pairs and points one of them to each of the arguments.

For example:

> (list ’(a list) ’word 87 #4 +)

((a list) word 87 #t +)

In practice it turns out to not be very useful, because you can only really use it when you know exactly
how many things you want in a list. A lot of list programming deals with sequences of arbitary length.
Thus, list is useful when you use a fixed-length list to represent an abstract data type, such as a point in
three-dimensional space:

(define (point x y z)

(list x y z))

2.4 Exercises: Naming

Come up with better names:

(define (mystery x)
(if (equal? x ’())

#t
(if (not (pair? x))

#f
(mystery (cdr x)))))

(define (mystery x y)
(if (null? x)

4

y
(cons (car x)

(mystery (cdr x) y))))

3 Lists vs. Sentences

We started out the semester using an abstract data type called sentence that looks a lot like a list. What’s
the difference, and why did we do it that way? Our goal was to allow you to create aggregates of words
without having to think about the structure of their internal representation (i.e., about pairs). We do this by
deciding that the elements of a sentence must be words (not sublists), and enforcing that by giving you the
constructor sentence that creates only sentences.

Here’s a slightly simplified version of sentences given what you now know about lists:

;;;;; In file cs61a/lectures/2.2/sentence.scm
(define (se a b)

(cond ((word? a) (se (list a) b))
((word? b) (se a (list b)))
(else (append a b))))

(define (word? x)
(or (symbol? x) (number? x)))

The point is this. Se is a lot like append, except that the latter behaves oddly if given words as arguments.
Se can accept words or sentences as arguments. Se always returns a flat list, but lists accept inputs that are
not flat.

3.1 Example: Reverse

Say you want to reverse a list. You’ll see that this is a little tricky using cons, car, and cdr as the problem
asks, but it’s easy for sentences:

(define (reverse sent)
(if (empty? sent)

’()
(se (reverse (bf sent))

(first sent))))

4 Box and Pointer Diagrams

Here are a few things that students often get wrong:

1. An arrow can’t point to half of a pair. Remember, the pair is essentially a data structure telling you
where to find two pieces of information. It doesn’t make sense to point to a a single half of a box,
because that’s like a mailing address pointing to another envelope. Thus, if you see something like
(define x (car y))
where y is a pair, the arrow for x should point to the thing that the car of y points to, not to the left
half of the y rectangle.

2. The direction of arrows (up, down, left, right) is irrelevant. You can draw them however you want to
make the arrangement of pairs neat. That’s why it’s crucial not to forget the arrowheads!

5

3. There must be a top-level arrow to show where the structure you’re representing begins.

How do you draw a diagram for a complicated list? Take this example:

((a b) c (d (e f)))

You begin by asking yourself how many elements the list has. In this case it has three elements: first (a
b), then c, then the rest. Therefore you should draw a three-pair backbone: three pairs with the cdr of one
pointing to the next one. (The final cdr is null.)

Only after you’ve drawn the backbone should you worry about making the cars of your three pair point
to the three elements of the top-level list.

6

	Pairs
	Overview
	Exercise: cons
	Naming
	Exercise: Pair Accessors

	Sequences: Lists
	Implementation
	Selectors
	Constructors
	cons
	append
	list

	Exercises: Naming

	Lists vs. Sentences
	Example: Reverse

	Box and Pointer Diagrams

