
HIERARCHICAL DATA 7
GEORGE WANG

gswang.cs61a@gmail.com
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

June 30, 2010

1 Review/Clarifications from Last Lecture

1.1 As Printed in Scheme

So you may have seen the dot in a pair in Scheme. I want you to know what that means. Scheme always
will print a pair as a pair of parentesis with a period in between the car and the cdr. However, this would
look really ugly in a list, and therefore, whenever you have a dot followed immediately by an open parens,
they ’cancel out’, and you’re left with nothing. Thus, everything that is a proper list will print without
periods, which is why you may not have seen them before.

In other words, if we do (list 1 2 3), what we should get under normal rules is (1 . (2 . (3 .
()))), as opposed to (1 2 3).

1.2 Lists and Sentences

RETRACTION. My TA’s have strongly objected to the characterization that was originally here, and so
here’s the final word on that. Lists are NOT sentences, and sentences are NOT lists. We should think about
sentences as something completely different from lists. Specifically, we should think about sentences as be-
ing an ADT (abstract data type) that is implemented using lists, but doesn’t have to be. We should always
respect the abstraction barrier between sentences and lists, by using the sentence constructs (sentence, ev-
ery, keep, first, butfirst, etc) only on sentences, and using the list constructs (list, car, cdr, cons, append, etc)
only on lists.

1



2 Trees

2.1 The Big Idea

Trees are a way we have of representing a hierarchy of information. The obvious example are family trees.
You have a matriarch and a patriarch followed by all the descendants. Alternately, we may want to orga-
nize a series of information geographically. At the very top, we have the world, but below that we have
countries, then states, then cities. We can also decompose arithmetic operations into something much the
same way.

+

÷

54

3

World

UK

Northern IrelandGreat Britain

United States

TXNY

NYC

CA

LASF

The name “tree” comes from the branching structure of the pictures, like real trees in nature except that
they’re drawn with the root at the top and the leaves at the bottom.

2.2 Terminology

A NODE is a point in the tree. In these pictures, each node includes a DATUM (the value shown at the node,
such as US or 4) but also includes the entire structure under that datum and connected to it, so the France
node includes all the French cities, such as Paris. Therefore, each node is itself a tree—the terms “tree” and
“node” mean the same thing! The reason we have two names for it is that we generally use “tree” when
we mean the entire structure that our program is manipulating, and “node” when we mean just one piece
of the overall structure. Therefore, another synonym for “node” is SUBTREE.

The ROOT NODE (or just the ROOT) of a tree is the node at the top. Every tree has one root node. A more
general structure in which nodes can be arranged more flexibly is called a graph. We’ll look at graphs later
in the course when we examine

The CHILDREN of a node are the nodes directly beneath it. For example, the children of the CA node in the
picture are the SF node and the LA node.

A BRANCH node is a node that has at least one child. A LEAF node is a node that has no children. (The root
node is also a branch node, except in the trivial case of a one-node tree.)

2.3 Variability between Different Trees

Scheme has one built-in way to represent sequences, which is the list, but there isn’t a built-in way to
represent trees. This isn’t a deficiency in Lisp itself, but rather is a commonality that is present among
many programming languages. This is because unlike lists, trees have tremendous variability in terms of
what they represent. For examples:

• Branch Nodes may or may not have data

• Connections between nodes may or may not have data

2



• Number of Branches may be limited or not

• Order of Siblings may or may not matter

• Does it make sense to have an empty Tree?

3 Deep Lists

3.1 Overview

In studying sentences and lists, we are looking at a flat sequence of information. Typically, this information
tends to come in a homogenous form, in the sense that they are all words, or all numbers, or such. Fur-
thermore, there isn’t any real structure to this information. Information doesn’t tend to interact or have any
relationships with one another, beyond that of ordering.

When we talk about lists, we typically think that our cdrs point to more information whereas our car
points to a single piece of information. However, consider what happens if our car can be either a list or a
piece of information as well. What does that lead us to, and what is the point of that?

Let’s take a look at something like this:

starrringoharrisongeorgemccartneypaullennonjohn

Instead of thinking of this as a Tree, it’s easier to think of this as a list of sentences:

(define beatles (list (se ’john ’lennon) (se ’paul ’mccartney)
(se ’george ’harrison) (se ’ringo ’starr)))

3.2 Example: Manipulating a Deep List

What if we wanted to take the first of every word in the list? How do we make that call?

(map (lambda (sent) (every first sent) beatles)

3.3 Generalization: deep-map

Now, say we want to generalize that to be able to do any function to every single thing that isn’t a pair in
a deep list. How do we deal with that? Essentially, this is going to be a map procedure, but this time, you
have to take into account that the car may or may not be a list. If it is, you want to map yourself over every
spine pair. Otherwise, it is an atom, so you should be calling your function on it.

For reference, map is provided here:

(define (map fn ls)
(if (null? ls)

’()
(cons (fn (car ls))

(map fn (cdr ls)))))

3



Well, there’s two ways you can write this. One way, is to change the (fn (car ls)) call to account for if the car
is a list, as follows:

(define (deepmap fn deeplist)
(if (null? deeplist)

’()
(cons (if (pair? (car ls))

(deepmap fn (car ls))
(fn (car ls)))

(map fn (cdr deeplist)))))

The more elegant way, is to not look in advance at the bottom most level, but to just recurse into it, as
follows:

(define (deepmap fn deeplist)
(if (pair? deeplist)

(map (lambda (dls) (deepmap fn dls)) deeplist)
(fn deeplist)))

This is so powerful, and so short, that it’s mindblowing. Try to trace it through some sample inputs to get
a better sense of how this is working.

3.4 Characteristics

In a deep list, the “branch nodes” have children but no datum, whereas the “leaf nodes” have a datum but
no children. That’s why deep-map chooses only one of the two tasks, using if to distinguish branches from
leaves. The number of branches is unlimited, and while this example does not distinguish the order of its
children, it could potentially matter.

4 Tree Abstract Data Type

We’ll get back to some of these variations later, but first we’ll consider a commonly used version of trees,
in which every tree has at least one node, every node has a datum, and nodes can have any number of
children. Here are the constructor and selectors:

(make-tree datum children)

(datum node)

(children node)

The selector children should return a list of trees. These children are themselves trees. There is a name for
a list of trees: a forest. It’s very important to remember that Tree and Forest are two different data types! A
forest is just a list, although its elements are required to be trees, and so we can manipulate forests using the
standard procedures for sequences (cons, car, cdr, etc.). A tree is not a sequence, and should be manipulated
only with the tree constructor and selectors. A leaf node is one with no children, so its children list is empty:

(define (leaf? node)
(null? (children node)) )

This definition of leaf? should work no matter how we represent the ADT, but the simplest implementa-
tion of this ADT is as follows:

(define make-tree cons)
(define datum car)

4



(define children cdr)

5


	Review/Clarifications from Last Lecture
	As Printed in Scheme
	Lists and Sentences

	Trees
	The Big Idea
	Terminology
	Variability between Different Trees

	Deep Lists
	Overview
	Example: Manipulating a Deep List
	Generalization: deep-map
	Characteristics

	Tree Abstract Data Type

