
CS61A Notes 06 – Data-Directed Programming (with some Scheme-1) (v1.1)
Data-Directed Programming

Up till now, we have been writing “smart programs” – programs that know what to do given the arguments. But
with data-directed programming, we’re slowly moving toward the paradigm where programs are dumb, but data are
smart. If you recall, procedures like apply-generic are short and simplistic, but the data you pass in – arguments
with type tags – and the data you store in the global table – containing separate procedures for dealing with different
type tags and operations – are what knows what to do with the data. Hence the term “data-directed programming”.
The advantage is simple: maintainability. Remember, programs or procedures are complicated beasts, and you
should cringe every time you need to modify a working procedure. Yet data is simple – putting new items into a
global table doesn’t require you to alter existing code. Adding new features will rarely break old, working code.

This is also useful when you’re dealing at once with multiple representations of data, like the corporate divisions
problem you saw in the lab. We will do something similar:

QUESTION: The TAs have broken out in a cold war; apparently, at the last midterm-grading session,
someone ate the last potsticker and refused to admit it. It is near the end of the semester, and Professor
Harvey really needs to enter the grades. Unfortunately, the TAs represent the grades of their students
differently, and refuse to change their representation to someone else’s. Professor Harvey is far too busy to
work with five different sets of procedures and five sets of student data, so for educational purposes, you have
been tasked to solve this problem for him. The TAs have agreed to type-tag each student record with their
first name, conforming to the following standard:

(define type-tag car)
(define content cdr)
It’s up to you to combine their representations into a single interface for Professor Harvey to use.

1. Write a procedure, (make-tagged-record ta-name record), that takes in a TA’s student
record, and type-tags it so it’s consistent with the type-tag and content accessor procedures
defined above.

2. A student record consists of two things: a “name” item and a “grade” item. Each TA represents a
student record differently. Min uses a list, whose first element is a name item, and the second
element the grade item. Justin uses a cons pair, whose car is the name item, and the cdr the grade
item. Make calls to put and get, and write generic get-name and get-grade procedures that
take in a tagged student record and return the name or grade items, respectively.

Ahmed Owainati CS61A; courtesy of Chung Wu

1

3. Each TA represents names differently. Darren uses a cons pair, whose car is the last name and
whose cdr is the first. Jerry is so cool that a “name” is just a word of two letters, representing the
initials of the student (so George Bush would be gb). Make calls to put and get to prepare the
table, then write generic get-first-name and get-last-name procedures that take in a tagged
student record and return the first or last name, respectively.

4. Each TA represents grades differently. Ahmed is lazy, so his grade item is just the total number of
points for the student. Justin is more careful, so his grade item is an association list of pairs; each
pair represents a grade entry for an assignment, so the car is the name of the assignment, and the
cdr the number of points the student got. Make calls to put and get to prepare the table, and write
a generic get-total-points procedure that take in a tagged student record and return the total
number of points the student has.

5. Now Professor Harvey wants you to convert all student records to the format he wants. He has
supplied you with his record-constructor, (make-student-record name grade), which takes
in a name item and a grade item, and returns a student record in the format Professor Harvey likes.
He also gave you (make-name first last), which creates a name item, and (make-grade
total-points), which takes in the total number of points the student has and creates a grade
item. Write a procedure, (convert-to-harvey-format records), which takes in a list of
student records, and returns a list of student records in Professor Harvey’s format, each record
tagged with ‘Brian.

Ahmed Owainati CS61A; courtesy of Chung Wu

2

You Are Scheme – and don’t let anyone tell you otherwise
Our intention is to build a Scheme interpreter, a program that reads in Scheme code and executes it much like STk
does. It’s pure, pure coincidence that we happen to be using Scheme to build this very Scheme interpreter. Don’t
get confused by that! Make sure you separate what is Scheme0/1, and what is STk. Sometimes, it might help to
pretend you’re not interpreting Scheme, but just some crazy, bizarre language.

Another word of caution: There are many, many ways to implement a Scheme interpreter. You’ll often find
yourself asking, why are we doing things this way? Well, very possibly, we don’t have to, but that’s a design
decision we made. So be more concerned with how it works before you ask why?

The Meat Is In eval-1 and apply-1
The whole operation of Scheme1 depends on the mutual recursion of eval-1 and apply-1. Here’s their job:

eval-1
• INPUT: a valid Scheme expression
• OUTPUT: the result of evaluating the Scheme

expression; the “value” of the expression
• If exp is “constant” (numbers, strings, #t, #f,

etc.), then return itself
• If exp is a symbol (+, *, car, etc.), then use the

underlying STK’s eval to evaluate it. This is
where Scheme1 cheats; all symbols are assumed to
be primitive procedures of STK. We do not expect
to see actual variables here, since we don’t have
define, and all variables in a lambda body
should’ve already been substituted with values.

• If exp is a special form, do special form voodoo
(if, lambda, quote)

• If exp is a procedure call, evaluate what the
procedure is (using eval-1), and evaluate the
arguments. Then, call apply-1 with the
evaluated procedure and arguments.

apply-1
• INPUT: a procedure and its arguments, both

already evaluated
• OUTPUT: the result of applying the procedure

to its arguments
• If the procedure is a primitive procedure (+, *,

cons, car, etc.), then use STK’s apply
procedure to perform primitive voodoo. We could
tell it’s a primitive procedure using procedure?
because, remember, eval-1 should’ve already
called STK’s eval on it already and turned it into
an STK procedure.

• If the procedure is a compound procedure (a
lambda expression), call eval-1 on the body of
the lambda with the parameters substituted
with the argument values

It is crucial to understand how eval-1 and apply-1 interact! It’s really not that complicated, and it’s exactly
what I’ve been muttering on the board whenever I pretend I’m Scheme and evaluate an expression. We’ll step
through an example soon with primitive procedures, but first, let’s look at how primitives are represented.

A Word On Special Forms

Before we dive too deeply into Scheme1 let’s briefly consider special forms. Where do we actually deal with them?
A quick glance at the code reveals that they’re very special indeed – we take care of them in eval-1. Note that
we, in no sense, consider them to be compound procedures, and we do NOT call apply-1 on a special form!

Remember why special forms are special – we don’t always evaluate every argument. If we treat it as a procedure
call, then we’re going to map eval-1 on all of its arguments, which is exactly what we don’t want to do.

So remember – if you want to add a special form, like we did for “and”, the place to do it is in eval-1. You must
catch it before eval-1 thinks it’s a procedure and evaluates all its arguments!

Ahmed Owainati CS61A; courtesy of Chung Wu

3

The Art of Being Complicated

Note that, as a quirk specific only to Scheme1, a lambda expression is self-evaluating (you can see this in
eval-1). That is, a lambda expression evaluates to itself, just like 3 evaluates to 3. Note, however, that a
lambda expression is not a procedure! This is an important distinction. A lambda expression is an expression –
something that you pass into eval-1 as an argument. A procedure is a value – something that eval-1 returns.
It’s simply a matter of coincidence that a procedure in Scheme1 is represented just like a lambda expression. This
is rather unfortunate, but will be fixed in mc-eval, the last iteration of these “normal” Scheme interpreters.

How is a compound procedure different from a primitive procedure? Well, to eval-1, a procedure call is a
procedure call, and when eval-1 sees one, it simply evaluates the procedure and its arguments, regardless of
whether the procedure is primitive or compound. It then just passes both the procedure and its arguments to
apply-1.

Thus it is apply-1 who distinguishes between primitive and compound procedures. Thus, the “proc” argument
of apply-1 can be one of two things:

• a primitive procedure – the result you get when eval-1 calls STK’s eval on a symbol like + or car
which are bound to primitive procedures in STK. These will pass STK’s procedure? test. To apply a
primitive procedure, apply-1 will use STK’s apply procedure to apply an STK procedure to the list of
arguments. Here we’re just passing the work off to the underlying STK.

• a compound procedure – this is represented as a lambda expression (though it is a procedure, not an
expression). These will pass the lambda-exp? test. Recall that, according to our “substitution model”,
in order to evaluate a compound procedure (a lambda) call, we substitute argument values for parameters
in the procedure’s body, and then evaluate the body. More precisely, we’re going to call eval-1 on the
body of the procedure, after we substitute all the formal parameters with the evaluated argument values.

QUESTIONS

1. If I type this into STK, I get an unbound variable error:
(eval-1 ‘x)
This surprises me a bit, since I expected eval-1 to return x, unquoted. Why did this happen?
What should I have typed in instead?

2. Hacking Scheme1: For some reason, the following expression works:
(‘(lambda(x) (* x x)) 3)

Note the quote in front of the lambda expression. Well, it’s not supposed to! Why does it work?
What fact about Scheme1 does this exploit?

Ahmed Owainati CS61A; courtesy of Chung Wu

4

