Notes courtesy of Justin Chen

CS61A Notes — Week 5b: Vectors, Metacircular evaluator

Just When You Were Getting Used to Lists...

Finally we are now introducing to you what many of you already know — arrays. Roughly, an array is a contiguous block of memory —

and this is why you can have “instantaneous”, random access into the array, instead of having to traverse down the many pointers of
a list.

Recall the vector operators:
(vector [elementl] [element2] ...) =>worksjustlike (1ist [elementl] ...)
(make-vector [num]) => creates a vector of num elements, all unbound

(make-vector [num] [init-value]) => creates a vectorof numelements, allsettoinit-value
(vector-ref v i) => v[i]; getsthe ith element of the vector v
(
(

vector-set! v i val) => v[i] = wval;setsthe ith element of the vector v to val
vector-length v) =>returns the length of the vector v

Beyond using different operators, there are a few big differences between vectors and lists:

Vectors of length N Lists of length N
¢ acontiguous block of memory cells * many units of two cells linked together by pointers
¢ 0O(1) for accessing any item in the vector * O(N) for accessing an item
e O(N) for adding an item to the middle of the vector, e 0O(1)for inserting an item anywhere in the list, assuming
since you have to move the rest of the vector down we have a pointer to the location
* O(N) for growing a vector; you have to reallocate a new, * 0(1) for growing a list; just add it at the beginning or the
larger block of memory! end (if you have a pointer to the end)
¢ add1toindex to get next element * cdr down a list
e you may have “unbound” elements in the vector; that is, * length of list is exactly the number of elements you've
length of vector is not the same as length of valid data put into the list

Note the last bullet. With lists, you allocate a new piece of memory (using cons) when you need to add an element, but with vector,
you allocate all the memory you need first, even if you don’t have enough data to fill it up.

Also, just as you can have deep lists, where elements of a list may be a list as well, you can also have “deep” vectors, often referred
to as n-dimensional arrays, where n refers to how “deep” the deep vector is. For example, a table would be a 2-dimensional array —
a vector of vectors. Note that, unlike in, say, C, your each vector in your 2D table does NOT have to have the same size! Instead, you
can have variable-length rows inside the same table. In this sense, the vectors of Scheme are more like the arrays of Java than C.

QUESTIONS

1. Write a procedure (sum-of-vector v) thatadds up the numbers inside the vector. Assume all data fields are valid
numbers.

2. Write a procedure (vector-copy! src src-start dst dst-start length). After the call, length
elements in vector src starting from index src-start should be copied into vector dst starting from index dst-start.
STk> a => #(1 2 3 45 6 7 8 9 10)

STk> b => #(a bcde £ ghijk)

STk> (vector-copy! a 5 b 2 3) => okay

STk> a => #(1 2 3 45 6 7 8 9 10)

STk> b => #(a b 6 78 £ gh i j k)

CS61A Summer 2010: George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng 1

Notes courtesy of Justin Chen

3. Write a procedure (insert-at! v i wval); after a call, vector v should have val inserted into location i. All
elements starting from location i should be shifted down. The last element of v is discarded.

STk> a => #(i'm like you #[unbound] #[unbound])

STk> (insert-at! a 1 ‘bohemian) => okay

STk> a => #(i'm bohemian like you #[unbound])

4. Write a procedure (vector-double! v). After a call, vector v should be doubled in size, with all the elements in the
old vector replicated in the second half. So,

STk> a => #(1 2 3 4)

STk> (vector-double! a) => okay

STk> a => #(1 2 3 41 2 3 4)

5. Write a procedure reverse-vector!. Do | have to explain what it does?

6. Write a procedure (square-table! t) thattakesin a rectangular table and squares every element.

CS61A Summer 2010: George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng 2

Notes courtesy of Justin Chen
Meta-metaevaluation

Let's examine how the metacircular evaluator represents things in underlying Scheme. A primitive procedure is represented as list
whose first element is the word PRIMITIVE and whose second element is the actual procedure:

(PRIMITIVE #[subr car]) ;; car in mceval

Non-primitive procedures are a bit more interesting. They're actually a list of four elements: the word PROCEDURE, a list of its
parameters, a list of expressions in the body, and the environment it was created in:

(define (foo a b) (+ a b)) =>
(PROCEDURE (a b) ((+ a b)) <the-global-environment>)

Does that last part sound familiar? The metacircular evaluator is just about as powerful as real Scheme, and the primary reason for
that is because we're using applicative order and the environment model.

Let's look at how environments are represented. The pair structure handles the environment model; each environment corresponds
to a pair whose its car points to the variable/value bindings (which we'll call a frame from now on) and whose cdr points to the
next environment (just like in the environment model). The global environment, then, has a null cdr. What does a frame look like?
Well, it's a pair whose car contains all of the variables, and whose cdr contains all of the values. Here's an example environment
created through a let call:

(let ((x 3) (y 5)) ...) =>
(((x y) 3 5) <the-global-frame>) ;; the printout of environment 1

Of course, multiple environments can and will point to the same environment, so the entire environment diagram is not a straight
list structure. Notice, however, that it's simple to simulate evaluating a variable with this model! Simply check the current frame for
a binding, and if it's not there, cdr to the next environment until we either find our variable or go past the global environment —in
which case the next environment is null.

QUESTION

Write lookup-variable-value, which takes a variable and starting environment and returns the value associated with the
variable or an error if it isn't found after the global environment.

CS61A Summer 2010: George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng 3

Notes courtesy of Justin Chen

Regular Metaevaluation
So all that above was simple, right? Now let's look at some code (with helpful comments written by yours truly):

(define (mc-eval exp env)

(cond
((self-evaluating? exp) exp)
((variable? exp) (lookup-variable-value exp env)) ;7 you just did this above
((quoted? exp) (text-of-quotation exp)) ;5 (cadr exp)
((assignment? exp) (eval-assignment exp env)) ;7 question 1 below
((definition? exp) (eval-definition exp env)) ;7 question 2 below
((1f? exp) (eval-if exp env)) ;; essentially uses Scheme if
((lambda? exp)
(make-procedure (lambda-parameters exp) ;; (cons 'procedure args)
(lambda-body exp)
env))

((begin? exp)

(eval-sequence (begin-actions exp) env))

(cond? exp) (mc-eval (cond->if exp) env)) ;; makes nested ifs
(application? exp)

(mc-apply (mc-eval (operator exp) env)

(list-of-values (operands exp) env))) ;; map mc-eval onto exps
(else
(error "Unknown expression type -- EVAL" exp))))
(define (mc-apply procedure arguments)

apply-primitive-procedure procedure arguments)) ;; use underlying Scheme apply
compound-procedure? procedure)
eval-sequence

(procedure-body procedure)

(

m
(cond ((primitive-procedure? procedure)
(
(
(

(extend-environment ;7 question 3 below
(procedure-parameters procedure)
arguments
(procedure-environment procedure))))
(else
(error
"Unknown procedure type -- APPLY" procedure))))

A lot of code, but remember mc—-eval is just an implementation of environment diagrams. One of the mysteries not covered above
is eval-sequence. This is how begin statements and, more importantly, compound procedures are handled:

(define (eval-sequence exps env)
(cond ((last-exp? exps) ;5 last-exp? => (null? (cdr exps)))
(mc-eval (first-exp exps) env)) ;; first-exp => car
(else (mc-eval (first-exp exps) env)
(eval-sequence (rest-exps exps) env))))

Fairly uninteresting for begin statements, but notice how it's called in mc-apply for compound procedures —the evaluating
environment is a new environment created using extend-environment, which you'll code in about 2 questions.

CS61A Summer 2010: George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng 4

Notes courtesy of Justin Chen

QUESTIONS

1. (define (eval-assignment exp env)

(set-variable-value! (assignment-variable exp) ;7 (cadr exp)
(mc-eval (assignment-value exp) env) ;; (caddr exp)
env)
'okay)
Modify your lookup-variable-value code above to create set-variable-value! (which takes an additional value
argument).

2. (define (eval-definition exp env)

(define-variable! (definition-variable exp) ;7 (cadr exp)
(mc-eval (definition-value exp) env) ;; (caddr exp)
env)

'okay)

Modify your set-variable-value! code above to create define-variable!. You should write a helper add-
binding-to-frame! that takes a variable, value, and frame, and adds the binding into the given frame.

3. Write (extend-environment vars vals base-env) that takes in a list of variables, a list of values, and an
environment to extend, and creates the new environment (as when you call a procedure in the environment model).

4. Write (mc-map fn 1s) to work with mc-eval. It will be installed as the primitive procedure associated with map.
£n is defined in our new representation.

Dynamic Scope

The major difference between lexical and dynamic scope's apply: In lexical scope, we extend the procedure environment (right
bubble) of the procedure we're invoking, whereas in dynamic scope, we extend the current environment. (Review: Which one does
Scheme use?)

Note that in dynamic scope, the right bubble is entirely unnecessary. Dynamic scope tends to be much easier to implement and
model, but lexical scope gives us a nice way to do local state. It is important to understand dynamic scope though, and it may prove

to be of some relevance to you in the near future (*cough* proj4).

There are various advantages that one has over the other, and I'll let you read about those in the lecture notes.

CS61A Summer 2010: George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng 5

