CS61A Notes - Week 06a: Concurrency and Streams (solutions)
Concurrency: The Series

1. Here is an attempt to simulate this behavior:

(define (eat-talk i)
(define (loop)

(cond ((can—-eat? i)
(take—-chopsticks i)
(eat—a-while)
(release—chopsticks 1i))

(else (spew—-nonsense)))

(loop)

(1oop))

(parallel-execute (lambda () (eat-talk 0))
(lambda () (eat-talk 1))
(lambda () (eat-talk 2)))

;; a list of chopstick status, #t if usable, #f if taken
(define chopsticks ' (#t #t #t))

;; does person i have both chopsticks?
(define (can-eat? i)
(and (list-ref chopsticks (right-chopstick 1i))
(list-ref chopsticks (left-chopstick i))))

;; let person i take both chopsticks
;; assume (list-set! 1ls i val) destructively sets the ith element of
;; 1ls to val
(define (take-chopsticks i)
(list-set! chopsticks (right-chopstick i) #f£)
(list-set! chopsticks (left-chopstick i) #f£f))

;7 let person i release both chopsticks

(define (release-chopsticks i)
(list-set! chopsticks (right-chopstick i) #t)
(list-set! chopsticks (left-chopstick i) #t))

;; some helper procedures
(define (left-chopstick i) (if (=1 2) 0 (+ i 1)))
(define (right-chopstick i) i)

Is this correct? If not, what kind of hazard does this create?

Incorrect; more than one person could be eating at once (all three check they can eat, all
three take chopsticks, and all three eat).

2. Here's a proposed fix:

(define protector (make-serializer))

(parallel-execute (protector (lambda () (eat-talk 0)))
(protector (lambda () (eat-talk 1)))

(protector (lambda () (eat-talk 2))))

Does this work?

Unfair. Note that eat-talk generates in infinite loop. The serializer makes sure only one
of the three is executed at once, so once parallel-execute picks one to execute, it’s
going to keep eating and eating, and the others won’t even get to execute at all.

Justin Chen CS61A Spring 2010 - notes courtesy of Chung Wu 1



3. Here’s another proposed fix: use one mutex per chopstick, and acquire both before doing
anything:

(define protectors
(list (make—-mutex) (make-mutex) (make-mutex)))

(define (eat-talk i)

(define (loop)
((list-ref protectors (right-chopstick i)) ‘acquire)
((list—-ref protectors (left-chopstick i)) ‘acquire)
(cond ... ;; as before)
((list-ref protectors (right-chopstick i)) ‘release)
((list-ref protectors (left-chopstick i)) ‘release)
(1oop))

(1oop))

Does that work?

Deadlock. Suppose all three grab the chopstick on the left at the same time; then all
three will be waiting for the chopstick on the right, resulting in deadlock.

4. What about this:
(define m (make—-mutex))
(define (eat-talk i)
(define (loop)
(m ‘acquire)

(cond ... ;; as before)
(m ‘release)
(loop))
(loop))
Inefficient (and not very correct). Only one will eat at the same time, and all other

politicians will Jjust be waiting to acquire the mutex (rather than spewing nonsense).

5. So what would be a good solution?

(define m (make—-mutex))
(define (eat-talk i)
(define (loop)
(m ‘acquire)
(cond ((can—-eat? i)
(take—chopsticks i)
(m ‘release)
(eat—a-while)
(m ‘acquire)
(release—chopsticks i)
(m ‘release))
(else (m ‘release) (spew—nonsense)))
(loop)
(loop))

Note what we’re using the mutex to protect - the chopsticks list structure! Every time we
want to look at it or change it, we must be holding the mutex. It’s correct because no two
processes will be modifying the list at the same time. It’s efficient because when we do

things that take a long time - like eating or spewing nonsense — we’re not holding the
mutex.

Justin Chen CS61A Spring 2010 - notes courtesy of Chung Wu 2



Streaming Along

QUESTIONS

1. Define a procedure (ones) that, when run with no arguments, returns a cons pair whose
car is 1, and whose cdr is a procedure that, when run, does the same thing.

(define (ones) (cons 1 (lambda () (ones))), or, just
(define (ones) (cons 1 ones))
2. Define a procedure (integers-starting n) that takes in a number n and, when run,

returns a cons pair whose car is n, and whose cdr is a procedure that, when run with no
arguments, does the same thing for n+1.

(define (integers-starting n)
(cons n (lambda () (integers-starting (+ n 1)))))
Constructing Streams
QUESTIONS: Describe what the following expressions define.
1. (define sl (add-stream (stream-map (lambda (x) (* x 2)) sl) sl))

Infinite loop! We didn't specify a first element. Even the define statement will go
into an infinite loop.

2. (define s2
(cons—-stream 1
(add-stream (stream-map (lambda (x) (* x 2)) s2) s2)))

1
2 6 18
+ 1 3 9
1 3 9 27 ... powers of 3
3. (define s3

(cons-stream 1
(stream—-filter (lambda (x) (not (= x 1))) s3)))

Infinite loop! stream—-filter will keep trying to look for a number that's not 1.
Or, more specifically, stream-filter, failing to find a non-1 element in stream-
car, will call stream-filter again, which will call stream-filter again, and so on.

4. (define s4
(cons—-stream 1
(cons—-stream 2
(stream—-filter (lambda (x) (not (= x 1))) s4))))

(L 222 2...)
Rather counter-intuitive, but...well, we know that it starts with 1 and 2, since we

said so. Then, the stream-cddr will be a stream that is produced by the stream-
filter. stream-filter returns a stream whose first element is the first non-1
element of s4 (namely, 2), and whose promise is (stream-filter pred? (stream-cdr
s)), where pred? is the lambda, and s is s4. What's (stream-cdr s4)? Well, it’s a
stream containing the element 2 and a promise to evaluate (stream-filter pred? s4).
And we already know what that returns - a stream starting with 2, with a promise to
evaluate (stream-filter pred? (stream-cdr s)), etc.

5. (define s5
(cons—-stream 1
(add-streams s5 integers)))

Justin Chen CS61A Spring 2010 - notes courtesy of Chung Wu



1 2 4 7
+ 1 2 3 4
1 2 4 7 11 ... starting from 1, add 1, 2, 3, etc.
6. Define facts without defining any procedures; the stream should be a stream of 1!, 2!,

3!, 4!, etc. More specifically, it returns a stream with elements (1 2 6 24 .)

(define facts
(cons—stream 1
(stream-map * (stream-cdr integers) facts)))

7. (HARD!) Define powers; the stream should be 1, 22, 33, ..., 01, (1 4 16 64 ...). Of
course, you cannot use the exponents procedure. I’ve given you a start, but you don’t have to
use it.

(define powers (helper integers integers))
(define (helper s t)
(cons—-stream (stream-car s)
(helper (stream-map * (stream-cdr s) (stream-cdr t))
(stream—-cdr t))))

Constructing Streams Through Procedures
QUESTIONS
1. Define a procedure, (list->stream 1s) that takes in a list and converts it into a stream.

(define (list->stream 1ls)
(cond ((null? 1ls) the—-empty-stream)
(else (cons—-stream (car 1ls) (list->stream (cdr 1s))))))

2. Define a procedure (lists-starting n) that takes in n and returns a stream containing (n),
(n n+l), (n n+l n+2), etc. For example, (lists-starting 1) returns a stream containing (1) (1
2) (1 2 3) (1 2 3 4)...

(define (lists-starting n)
(cons—-stream (list n)
(stream-map (lambda (ls) (cons n 1ls)) (lists-starting (+ n 1)))))

3. Define a procedure (chocolate name) that takes in a name and returns a stream like so:
(chocolate ‘chung) =>

(chung really likes chocolate chung really really likes chocolate chung really really
really likes chocolate ...)

You’ll want to use helper procedures.

(define (chocolate name)
(define (helper n)
(cons—stream name
(stream—append (really n) (helper (+ n 1)))))
(define (really n)
(cond ((= n 0)
(cons—-stream ‘likes
(cons—stream ‘chocolate the-empty-stream))
(else (cons-stream ‘really (really (- n 1))))))
(helper 1))

Justin Chen CS61A Spring 2010 - notes courtesy of Chung Wu



Stream Processing
QUESTIONS:

1. Define a procedure, (stream-censor s replacements) that takes in a stream s and a table
replacements and returns a stream with all the instances of all the car of entries in
replacements replaced with the cadr of entries in replacements:
(stream—censor (hello you weirdo ...) ((you I-am) (weirdo an-idiot))) =>

(hello I-am an-idiot ...)

(define (stream-censor s replacements)
(1f (stream—null? s)
the-empty-stream
(let ((match (assoc (stream-car s) replacements)))
(1f match
(cons—stream (cadr match)
(stream—-censor (stream—-cdr s) replacements))
(cons—stream (stream-car s)
(stream-censor (stream-cdr s) replacements))))))

2. Define a procedure (make-alternating s) that takes in a stream of positive numbers and
alternates their signs. S0 (make-alternating ones) => (1 -1 1 -1 ...) and (make-alternating
integers) => (1 -2 3 -4 ...). Assume s is an infinite stream.

(define (make—-alternating s)
(cons—-stream (stream-car s)
(cons—stream (* -1 (stream-car (stream-cdr s)))
(make-alternating (stream-cdr (stream-cdr s))))))

or, a cooler way:

(define (make-alternating s)
(cons—stream (stream-car s)
(stream—-map (lambda (x) (* -1 x))
(make—-alternating (stream-cdr s)))))

My Body's Floating Down the Muddy Stream
MORE QUESTIONS

1. Given streams ones, twos, threes, and fours, write down the first ten elements of:
(interleave ones (interleave twos (interleave threes fours)))

(interleave threes fours) ==> (3 4 3 4 3 4 ...)
(interleave twos threes-fours) ==> (2 3 2 4 2 3 2 4 ...)
(interleave ones twos—-threes—fours) ==> (1 2 1 31 2 141 213 ...)

2. Construct a stream all-integers that includes 0 and both the negative and positive
integers.

(define all-integers
(interleave (make-alternating (integers-starting 0))
(make—-alternating (integers-starting 1))))

Or, you could’ve interleaved the positives and the negatives.

3. Suppose we were foolish enough to try to implement stream-accumulate:
(define (stream—accumulate combiner null-value s)
(cond ((stream-null? s) null-value)
(else (combiner
(stream—-car s)
(stream—accumulate combiner null-value (stream-cdr s))))))

Justin Chen CS61A Spring 2010 - notes courtesy of Chung Wu 5



What happens when we do:
a. (define foo (stream—accumulate + 0 integers))

The define statement goes into an infinite loop. When we evaluate stream—-accumulate, we’ll
go into the else clause, and have to call stream-accumulate again on the stream-cdr of
integers, which does the same thing again. The problem is, NOTHING IS DELAYED.

b. (define bar (cons-stream 1 (stream—-accumulate + 0 integers)))

The define statement is fine (since stream—accumulate is delayed). But when you call
stream-cdr on bar, all hell breaks loose again.

C. (define baz (stream—accumulate
(lambda (x y) (cons—stream x y))
the-empty—-stream integers))

So the question is, does THIS delay anything? It looks like it does. If the combiner uses
cons—-stream, then it seems that we’ll delay the evaluation of y, which is the next call to
accumulate. Alas, that’s making the same mistake as believing new-if would work. Whereas
cons—-stream is a special form, the combiner is NOT, and so it will evaluate both of its
arguments - including the call to accumulate - before evaluating its body. So the problem
persists.

4, SICP ex. 3.68, page 341. If you understand this, you’ll be fine.

This doesn’t work. Let’s try (pairs integers integers). We start with a call to interleave.
Well, interleave is not a special form, so evaluate both arguments. What’s the first

argument, the call to stream-map? It returns a stream starting with (1 1). What’s the
second argument, the call to pairs? Well, what’s (pairs (stream-cdr integers) (stream-cdr
integers)? It’s a call to interleave. The first argument to interleave is (2 2), and the
second argument is a call to pairs again...and so on.

Justin Chen CS61A Spring 2010 - notes courtesy of Chung Wu 6



