CS61A Notes - Week 6b: Midterm 2 Review Solutions

QUESTION 1. (What will Scheme print?)

What will Scheme print? If it will cause an error, simply write ERROR.

(a)

```
> (equal? ((lambda (x) (x x x)) 7) '(7 7 7))
```

ERROR
(b)

```
> (define x (cons 1 'x))
> (define y x)
> (set! x 1)
> Y
(1 . x)
```


QUESTION 2. (Box-'n'-pointers)

Draw a box-and-pointer diagram for the following (the number of pairs in your final answer MATTERS). Also, fill in any blanks with the return value.

```
> (define a (list (list 3) 5))
> (define b (append a a))
> (set-car! (cdr b) (caddr b))
> (set-car! a (cons 3 4))
>a
((3 . 4) 5)
> b
( (3) (3) (3 . 4) 5)
```

QUESTION 3. What are all the possible values of x after running the following Scheme code? If there can be deadlock, write DEADLOCK.

```
> (define x 8)
> (parallel-execute (lambda () (set! x (+ x l)))
    (lambda () (set! x (if (even? x)
    (set! x (+ x 5))
    (+ x 50)))))
```

9, okay, 59, ERROR, 14

CS61A Summer 2010 - George Wang, Jonathan Kotker, Seshadri Mahalingam, Eric Tzeng, Steven Tang

QUESTION 4.

(a) x, because ' x is a quoted expression.
(b) ERROR, because x itself has not been defined yet.
(c) A compound procedure called quote that takes in one argument called x.
(d) Again, x, because it is a quoted expression. This expression is caught by the quoted? clause before the application? clause. The definition of a procedure called quote can never actually be used. : \cdot

QUESTION 5. Draw an environment diagram for the following Scheme code. Also, fill in any blanks with the return value.

```
> (define foo
    (let ((x 3))
        (lambda ()
            (if (= x 1)
                X
                    (* x (begin (set! x (- x l)) (foo)))))))
> (foo)
6
> (foo)
1
```

