
CS61A Notes – Week 07a (solutions):
Applicative and Normal Order, Lazy evaluator, Nondeterministic evaluator
Applicative vs. Normal Order

QUESTIONS

1. Above, applicative order was more efficient. Define a procedure where normal order is
more efficient.

Anything where not evaluating the arguments will save time works. Most trivially,

(define (f x) 3) ;; a function that always returns 3

When you call (f (fib 10000)), applicative order would choke, but normal order
would just happily drop (fib 10000) and just return 3.

2. Evaluate this expression using both applicative and normal order: (square (random x)).
Will you get the same result from both? Why or why not?

Unless you’re lucky, the result will be quite different. Expanding to normal order,
you have (* (random x) (random x)), and the two separate calls to random will
probably return different values.

3. Consider a magical function count that takes in no arguments, and each time it is
invoked, it returns 1 more than it did before, starting with 1. Therefore, (+ (count)
(count)) will return 3. Evaluate (square (square (count))) with both applicative and
normal order; explain your result.

For applicative order, (count) is only called once – returns 1 – and is squared
twice. So you have (square (square 1)), which evaluates to 1.

For normal order, (count) is called FOUR times:

(* (square (count)) (square (count))) =>
(* (* (count) (count)) (* (count) (count))) =>
(* (* 1 2) (* 3 4)) =>
24

The Lazy Way Out

QUESTIONS: What is printed at each line?

1. > (define x (+ 2 3))
> x => 5
> (define y ((lambda (a) a) (* 3 4)))
> y => 12
> (define z ((lambda (b) (+ b 10)) y))
> z => 22

2. > (define count 0)
> (define (foo x y) (x y))
> (define z (foo (lambda (a) (set! count a) (* a a))
 (begin (set! count (+ 1 count)) count)))
> count => 0
> z => infinite loop

3. > (define count 0)

CS61A Summer 2010
George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng
Notes courtesy of Chung Wu 1

> (define (incr!) (set! count (+ count 1)))
> (define (foo x)
 (let ((y (begin (incr!) count)))
 (if (<= count 1)
 (foo y)
 x)))
> (foo 10) => infinite loop

Nondeterministic and Indecisive

QUESTIONS

1. Suppose we type the following into the amb evaluator:
> (* 2 (if (amb #t #f #t)
 (amb 3 4)
 5))
What are all possible answers we can get?

6, 8, 10

2. Write a function an-atom-of that dispenses the atomic elements of a deep list (not
including empty lists). For example,
> (an-atom-of ‘((a) ((b (c))))) => a
> try-again => b

(define (an-atom-of ls)
 (cond ((null? ls) (amb))
 ((atom? ls) ls)
 (else (amb (an-atom-of (car ls))
 (an-atom-of (cdr ls))))))

3. Use an-atom-of to write deep-member?.

(define (deep-member? X ls)
 (let ((maybe-x (an-atom-of ls)))
 (require (equal? x maybe-x))
 #t))

4. Fill in the blanks:
> (define (choose-member L R)
 (cond ((null? R) (amb))
 ((= (car L) (car R)) (car L))
 (else (amb (choose-member L (cdr R))
 (choose-member (cdr L) R)))))
> (choose-member ‘(1 2 3) ‘(4 2 3))
3

> try-again
2

> try-again
2

CS61A Summer 2010
George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng
Notes courtesy of Chung Wu 2

