Nondeterministic and Indecisive

QUESTIONS

1. Suppose we type the following into the amb evaluator:
> (* 2 (if (amb \#t \#f \#t)
(amb 3 4)
5))

What are all possible answers we can get?

$$
6,8,10,6,8
$$

2. Write a function an-atom-of that dispenses the atomic elements of a deep list (not including empty lists). For example, $\left.>\left(a n-a t o m-o f{ }^{\prime}((a)((b)(c)))\right)\right)=>a$
$>$ try-again $=>b$
(define (an-atom-of ls)
(cond ((null? ls) (amb))
((atom? ls) ls)
(else (amb (an-atom-of (car ls))
(an-atom-of (cdr ls))))))
3. Use an-atom-of to write deep-member?.
```
(define (deep-member? X ls)
    (let ((maybe-x (an-atom-of ls)))
        (require (equal? x maybe-x))
        #t))
```

4. Fill in the blanks:
```
> (define (choose-member L R)
    (cond ((null? R) (amb))
        ((= (car L) (car R)) (car L))
        (else (amb (choose-member L (cdr R))
                            (choose-member (cdr L) R)))))
>(choose-member '(1 2 3) '(4 2 3))
3
> try-again
2
> try-again
2
```

Lists Again (and again, and again, and again, and again...)

QUESTIONS

1. Write a rule for car of list. For example, ($\begin{gathered}\text { car } \\ \left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right) ~ ? ~\end{gathered}$) would have ? x bound to 1 .
```
(rule (car (?car . ?cdr) ?car))
```



```
(rule (cdr (?car . ?cdr) ?cdr))
```

 would not, and (member 3 (1 2 (3 4) 5)) would not.

```
(rule (member ?item (?item . ?cdr)))
(rule (member ?item (?car . ?cdr)) (member ?item ?cdr))
```

4. Define its cousin, deep-member, so that (deep-member 3 (1 2 (3 4 (4) 5)) would be satisfied as well.
```
(rule (deep-member ?item (?item . ?cdr)))
(rule (deep-member ?item (?car . ?cdr)) (deep-member ?item ?car))
(rule (deep-member ?item (?car . ?cdr)) (deep-member ?item ?cdr))
Note how ?item can either be in ?car or ?cdr, so we need three rules.
```

5. Define another old friend, reverse, so that (reverse (lllll $\left.\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{ll}3 & 2\end{array}\right)$ l would be satisfied.
```
(rule (reverse () ()))
(rule (reverse (?car . ?cdr) ?reversed-ls)
    (and (reverse ?cdr ?r-cdr)
    (append ?r-cdr (?car) ?reversed-ls)))
```

 satisfied.

```
(rule (deep-reverse ?item ?item) (lisp-value atom? ?item))
(rule (deep-reverse () ()))
(rule (deep-reverse (?car . ?cdr) ?dr-ls)
    (and (deep-reverse ?car ?r-car)
        (deep-reverse ?cdr ?r-cdr)
        (append ?r-cdr (?r-car) ?dr-ls)))
```

We need the first rule because recall that a "deep-list" could be an atom, and that the third rule does not check if the ?car is an atom or not when it recurses on it.
7. Write the rule remove so that (remove $\begin{array}{llllllll}3 & \left.\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 3 & 2\end{array}\right) \text { ?what) binds ?what to (} \begin{array}{llll}1 & 2 & 4 & 2\end{array}\right) \text { - the list with } 30\end{array}$ removed.

```
(rule (remove ?item () ()))
(rule (remove ?item (?item . ?cdr) ?result)
    (remove ?item ?cdr ?result))
(rule (remove ?item (?car . ?cdr) (?car . ?r-cdr))
    (and (not (same ?item ?car))
        (remove ?item ?cdr ?r-cdr)))
```

 $3 \mathrm{c} d$).

```
(rule (interleave ?ls () ?ls))
(rule (interleave () ?ls ?ls))
(rule (interleave (?car . ?cdr) ?ls2 (?car . ?r-cdr))
    (interleave ?ls2 ?cdr ?r-cdr))
```

9. Consider this not very interesting rule: (rule (listify ?x (?x))). So if we do (listify 3 ?what), ?what would be bound to (3).

Define a rule map with syntax (map procedure list result), so that (map listify (1 2 3) ((1) (2) (3)))
 something cool like (map ?what (1 2 3) (1 (1) (2) (3))) and have ?what bound to the word "listify". Assume the "procedures" we pass into map are of the form (procedure-name argument result).
CS61A Summer 2010
George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng
Notes courtesy of Chung Wu and Justin Chen

```
(rule (map ?proc () ()))
(rule (map ?proc (?car . ?cdr) (?new-car . ?new-cdr))
    (and (?proc ?car ?new-car)
    (map ?proc ?cdr ?new-cdr)))
```

10. We can let predicates have the form (predicate-name argument). Define a rule even so that (even 3) is not satisfied, and (even 4) is satisfied.
```
(rule (even ?x) (lisp-value even? ?x))
```

11. The above is a way to make predicates. And once we have predicates, we can - and will, of course - write a filter rule
 Yes, and querying (filter ?what (10 1112 13) (10 12)) would bind ?what to the word "even".
```
(rule (filter ?pred () ()))
(rule (filter ?pred (?car . ?cdr) (?car . ?new-cdr))
    (and (?pred ?car)
            (filter ?pred ?cdr ?new-cdr)))
(rule (filter ?pred (?car . ?cdr) ?new-ls)
    (and (not (?pred ?car))
    (filter ?pred ?cdr ?new-ls)))
```


Number Theory (The Bizarre Way)

QUESTIONS

1. Write the rule subtract using the same syntax as sum. Assume that the first argument will always be greater than the second (since we don't support negative numbers with our system!)
```
(rule (subtract ?x () ?x)) ; ; x - 0 = x
(rule (subtract ?x (a . ?y) ?z) ; ; x - y = z <=> x - (y-1) = z + 1
    (subtract ?x ?y (a . ?z)))
Alternatively,
(rule (subtract ?a ?b ?c) ; ; a - b = c <=> c + b = a
    (sum ?c ?b ?a))
```

2. Write the rule product. You may use rules that you have defined before.
(rule (product () ?y ())) ; ; 0 * $y=0$
(rule (product (a . ?x) ?y ? z) ; ; x * $y=z<=>((x-1)$ * $y)+y=z$
(and (product ?x ?y ?i)
(sum ?i ?y ?z)))

Alternatively,
(rule (product () ?x ())) ; 0 * x = 0
(rule (product (a . ?x) ?y ?z) ; ; x * y = z < $=>(x-1)$ * $y+y=z$
(and (product ?x ?y ?i)
(sum ?i ?y ?z))))
3. Write the rule divide that divides the first argument with the second, and returns the quotient and the remainder. For example, (divide (a a a a a a) (a a a) ?quo ?rem) would bind ?quo to (a a) and ?rem to (a). You may (and should!) use rules that you have defined before.

Recall that (quotient * divisor) + remainder = dividend.
CS61A Summer 2010
George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng

```
(rule (divide ?dividend ?divisor ?quo ?rem)
    (and (product ?quo ?divisor ?prod)
        (sum ?prod ?rem ?dividend)))
```

4. Define the rule exp (for exponent, of course), with the first argument the base and second the power, so that (exp (a a) (a a) ?what) would bind ?what to (a a a a).
(rule (exp ?x () (a))) ; ; $x^{\wedge} 0=1$
(rule (exp ?base (a . ?pow) ?z) ; ; $x^{\wedge} y=z \Leftrightarrow x^{\wedge}(y-1) * x=z$
(and (exp ?base ?pow ?i)
(product ?base ?i ?z)))
5. Write the rule factorial, so that (factorial (a a a) ?what) would bind ?what to (a a a a a a).
```
(rule (factorial () (a))) ;; 0! = 1
(rule (factorial (a . ?x) ?y) ; ; x! = y <=> (x-1)! * x = y
    (and (factorial ?x ?i)
        (product ?i (a . ?x) ?y)))
```

6. Write the rule appearances that counts how many times something appears in a list. For example, (appearances

3 (1 23323 3) ?what) would bind ?what to (a a a a).

```
(rule (appearances ?item () ()))
(rule (appearances ?item (?item . ?cdr) (a . ?count))
    (appearances ?item ?cdr ?count))
(rule (appearances ?item (?car . ?cdr) ?count)
    (and (not (same ?car ?item))
    (appearances ?item ?cdr ?count)))
```

