CS61A Notes - Week 08a: Analyzing Evaluator
Analyzing Evaluator - “This is where the magic happens”

The intuition is quite easy. We want to “compile” expressions into procedures that take in an
environment. This is mainly for speeding up procedure calls (and note, NOT for just recursive
procedures).

For instance, in mc-eval, let us suppose | use the square procedure a lot. Let's look at the
sample call (square 7):

1. (square 7): not self-evaluating, not a symbol...
application: eval square, eval 7
apply square to operands: (7)

2. apply: not primitive, compound procedure
extend environment, eval (* x x)

3. (* x x): not self-evaluating, not a symbol...
application: eval *, lookup x, Lookup x

apply *

Annoying, isn't it? Every time we call square, we have to go through mc-eval's cond clause,
checking for what type of expression the body of square is.

What if we could analyze the square procedure once so that we know what type of expression
the body of square is? That's what the analyzing evaluator does:

1. (analyze (square 7)) => <analyzed-procedure>
returns analyzed procedure that takes in an environment
2. (<analyzed-procedure> env) => value
applies the body of the procedure to the operands

And that's it! Well, sort of. How do we actually do this? First, we analyze the expression. After
analysis, we package the information into a procedure:

(lambda (env) (apply (lookup * env)
(list (lookup x env) (lookup x env))))

Then, every time we call square, we just call the above procedure with the appropriate
environment. (Disclaimer: This isn't exactly how it looks, because analyzing-eval has to
handle general cases.)

So here's the model: (define (analyzing-eval exp env) ((analyze exp) env)). Analyze
the expression, and when it's time for evaluation, plug in the environment.

(define (analyze-lambda exp)
(let ((vars (cadr exp))
(analyzed-body (analyze-sequence (lambda-body exp))))
(lambda (env) (make-procedure vars analyzed-body env))))

Here's where most of the benefits of analysis will come. The difference is that we analyze the
body BEFORE we make the procedure, so when it comes to calling this procedure, all we have to
do is take the analyzed-body and pass in the appropriate environment.

CS61A Summer 2010
George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng
Notes courtesy of Justin Chen and Chung Wu 1



(define (analyze-application exp) ;; for lambda-created procs, not directly
from code
(lambda (env)
(let ((analyzed-proc (analyze (operator exp)))
(analyzed-operands (map (lambda (a) (a env))
(map analyze (operands exp)))))
((procedure-body proc)

(extend-environment (procedure-parameters analyzed-proc)
analyzed-operands
(procedure-environment analyzed-proc))))

So in the example of square, it first goes through analyze-1lambda, then every time we want the
value of square called with some argument, we use analyze-application.

If you haven't noticed by now, all the analyzing evaluator does is package procedures into
regular Scheme procedures. But the idea is still important - if we can compile procedures
into reqular Scheme procedures, it's not much harder to compile it into something else, like
machine language. This is what compiling is!

(Note: When you see analyze-application in the code, it won't look like above. But it's just
split between analyze-application and execute-application.)

Which of the following would be faster in analyzing-evaluator?

1. (+12)

2. (((Lambda (x) (lambda (y) (+ x y))) 5) 6)

3. (map (lambda (x) (* x x)) ‘(123456789 10))

4. (define fib
(Lambda (n)
(if (or (=n0) (=n1l)) 1
(+ (fib (- n 1)) (fib (- n 2)))))
(fib 5)

5. (define fact
(lambda (x) (if (= x 0) 1 (* x (fact (- x 1))))))

6. (accumulate cons nil '(1 234567 89 10))

CS61A Summer 2010
George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng
Notes courtesy of Justin Chen and Chung Wu 2



FINAL REVIEW QUESTIONS

QUESTION 1.
Write a rule or rules to determine if one integer is less than another. For
example, the query

(less ?x (a a a))

should give the results

(less () (a a a)) (less (a) (a a a)) (less (a a) (a a a))

QUESTION 2.
Consider the following Scheme program:
(let ((a (amb 1 2 3))
(b (amb 4 5 6)))
(display "hello")
(require (= b (* a 2)))
a)

How many times will hello be printed? What is the return value?

QUESTION 3. (Question 13 of the Final Exam, Spring 2003 )
Given the following definitions:

(define s (make-serializer))

(define t (make-serializer))

(define x 10)

(define (f) (set! x (+ x 3)))

(define (g) (set! x (* x 2)))

Can the following expressions produce an incorrect result, a deadlock, or
neither? (By ”incorrect result” we mean a result that is not consistent with some
sequential ordering of the processes.)

(a) (parallel-execute (s f) (t g))

(b) (parallel-execute (s f) (s g))
(c) (parallel-execute (s (t £)) (t g))
CS61A Summer 2010

George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng
Notes courtesy of Justin Chen and Chung Wu 3



(d) (parallel-execute (s (t f£)) (s g))

(e) (parallel-execute (s (t f)) (t (s qg)))

QUESTION 4.

Write subseq in the query evaluator. subseq takes two arguments. The first is a
list containing several elements and the second is also a list. The query
evaluator should return a solution if the elements in the first list are present
in the second list in the same order. For example:

> (subseq (a bc) (a zbyc)) ;; returns a solution
(subseq (a b c) (a z by c))

QUESTION 5.
Lem E. Tweakit makes the following change to mc-eval in the meta-circular
evaluator:

((application? exp)

(mc-apply (mc-eval (operator exp) env)

(list (eval-sequence (operands exp) env)))) ;; <-- changed
;; was: (list-of-values (operands exp) env)))

He finds that the modified evaluator doesn't work correctly. Indicate which of
the following expressions now cause an error, return incorrect results, or return
the correct (usual) values. Circle ERROR, INCORRECT, or CORRECT for each.

Assume square is defined as always: (define (square x) (* X X)).
ERROR INCORRECT CORRECT (square 1)

ERROR INCORRECT CORRECT (square 2)

ERROR INCORRECT CORRECT (+ 3 4)

ERROR INCORRECT CORRECT (lambda (X y) Y)

ERROR INCORRECT CORRECT ((lambda (X y) y) 6 7)

ERROR INCORRECT CORRECT ((lambda (x) (+ x 5)) 9)

CS61A Summer 2010
George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng
Notes courtesy of Justin Chen and Chung Wu 4



