CS61A Notes - Week 08b: Review

QUESTION 1.

At Depth University, a student must complete at least one advanced class to
graduate. However, every advanced class has a prerequisite, which may itself
have a prerequisite, and so on. Write a procedure fast-grad that, given a
prerequisite tree, with constructor make-tree and selectors datum and children,
returns the shortest possible list of courses needed to graduate. If there is a
tie, fast-grad may return any of the shortest lists. You may assume that all
leaf nodes are advanced classes, and vice versa.

For example, fast-grad called on the following tree can return (CS61A CS70 CS170)
or (CS61A CS61B CS184), either one is correct.

CS61A
/ \
CS61B Cs70
/ \ \
CS61C CS184 Cs170
/ \
Csl64 CsS150
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QUESTION 2.
We want to determine if there is a path from one building to another on campus.
Connections are represented like this:

(connected Soda Cory)
(connected Cory Soda) ;; two-way connection

(connected Cory Evans)
(connected Evans Cory) ;; two-way connection

Write rules for is-connected that takes a current location and an ending location
and a list of future locations and checks if the list is a valid sequence of
steps to get to the end location according to connected. (Since the final
element is a list of FUTURE steps, the current location is NOT INCLUDED in the
list, but the ending location matches the last element of the list.)

QUESTION 3.
What are the first 5 elements of the following stream?

(define powers (cons-stream 1 (stream-map *
(stream-map +
ones
ones
ones
ones)
powers)))
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QUESTION 4.

We want to write a system to calculate the average grades of students. However,
we'd like to be able to break them down by type of student: graduate student,
undergraduate, lazy, motivated, and so on. A grade is a single number, and it is
tagged with the type of student it is associated with:

(define lazy-grade (attach-tag ‘lazy 60))

a) Write a procedure populate-records that takes a list of type-tagged student
grades and populates a table using the get and put methods discussed in class.

It should populate the table with a score total per type of student, and a number
of appearances per type of student. For example:

> (define lazyl (attach-tag ‘lazy 60))
(lazy . 60)

> (define lazy2 (attach-tag ‘lazy 70))
(lazy . 70)

> (define normall (attach-tag ‘normal 85))
(normall . 85)

> (populate-records (list lazyl lazy2 normall))
okay ;; return value unimportant

> (get ‘lazy ‘total)

130 ;; 60 + 70

> (get ‘lazy ‘appearances)

2 ;; two lazy students

b) Using the total and appearances data, write a procedure get-average that takes
in a type of student and returns their average performance. Continuing the
example from above, (get-average ‘lazy) would return 65. If the type of student
did not appear, return 0.

QUESTION 5.
Fill in the blank in the following interaction with the metacircular evaluator:

;37 M-Eval input:
if
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QUESTION 6.
For each evaluator, will the following expression return a value or cause
an error? Circle VALUE or ERROR for each.
> (let ((a 3)
(b a))
(+ a 4))

VALUE ERROR The MCE
VALUE ERROR Analyzing evaluator
VALUE ERROR Lazy evaluator
For each evaluator, will the following expression return a value or cause
an error? Circle VALUE or ERROR for each.
> (let ((a 3)

(b a))

(+ a b)) ;; this line different from the one above

VALUE ERROR The MCE
VALUE ERROR Analyzing evaluator
VALUE ERROR Lazy evaluator

QUESTION 7.
Here is a transcript of a Scheme session. Fill in the blanks

> a
(12 (3 45) 6)
> b

(1 23 4 5)

> C

(1 2 (3 45) 6)

> (eg? (cddr b) (caddr a))
#T

> (eqg? (caddr c) (caddr a))
#F

> (eq? (cdaddr c) (cdddr b))
#T

> (set-car! (caddr a) 7)
okay

> (set-car! (cdaddr a) 8)
okay

> b
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QUESTION 8.

Draw this baby, but stop drawing when you have a feel for how things will work
out in the end.

(define x 4)
(define (define-x x) (define x x) Xx)

(define (confusing x y)
(let ((z (x y)))
(set! confusing z))
(set! x 10)
(confusing))

(confusing define-x (let ((total 0))
(lambda ()
(set! total (+ total x))
(confusing))))

QUESTION 9.

In the lazy evaluator you are given:

(define (actual-value exp env)
(force-it (mc-eval exp env)))

(define (force-it obj)
(if (thunk? obj)
(actual-value (thunk-exp obj)
(thunk-env obj))
obj))

Consider this modication in all capitals:
(define (force-it obj)
(if (thunk? obj)
(MC-EVAL (thunk-exp obj)
(thunk-env obj))
obj))

Assume the following functions are typed at the lazy prompt:

(define (identity x) x)

(define (foo a b)
(+ (bar a) b))

(define (bar a) (* a a))

What is the value returned by the lazy evaluator for each of the following
expressions? If something abnormal happens, please describe.

(a) (bar 3)

(b) ((lambda (x) (* x x)) ((lambda (x) x) 5))
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(c) (foo 6 7)

(d) (let ((a +) (b 4))
(+ b b))

(e) (identity (identity 6))

QUESTION 10.
Write a procedure useless-square that performs the squaring function correctly
the first time you call it, and thereafter only returns what it returned the

first time. For example,

> (useless-square 5)
25
> (useless-square 10)
25
> (useless-square 3)
25

QUESTION 11.
Write rules for the following query that flattens a list:

> (flatten (a (b c) d ((e))) ?what)
(flatten (a (b c) d ((e))) (a b c d e))
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