CS61A Notes - Week 08b: Review

QUESTION 1.

At Depth University, a student must complete at least one advanced class to
graduate. However, every advanced class has a prerequisite, which may itself
have a prerequisite, and so on. Write a procedure fast-grad that, given a
prerequisite tree, with constructor make-tree and selectors datum and children,
returns the shortest possible list of courses needed to graduate. If there is a
tie, fast-grad may return any of the shortest lists. You may assume that all
leaf nodes are advanced classes, and vice versa.

For example, fast-grad called on the following tree can return (CS61A CS70 CS170)
or (CS61A CS61B CS184), either one is correct.

CS61A
/ \
CS61B Cs70
/ \ \
CS61C CS184 Cs170
/ \
Csl64 CsS150

CS61A Summer 2010
George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng
Notes courtesy of Carolen, Justin Chen and Chung Wu 1



QUESTION 2.
We want to determine if there is a path from one building to another on campus.
Connections are represented like this:

(connected Soda Cory)
(connected Cory Soda) ;; two-way connection

(connected Cory Evans)
(connected Evans Cory) ;; two-way connection

Write rules for is-connected that takes a current location and an ending location
and a list of future locations and checks if the list is a valid sequence of
steps to get to the end location according to connected. (Since the final
element is a list of FUTURE steps, the current location is NOT INCLUDED in the
list, but the ending location matches the last element of the list.)

QUESTION 3.
What are the first 5 elements of the following stream?

(define powers (cons-stream 1 (stream-map *
(stream-map +
ones
ones
ones
ones)
powers)))

CS61A Summer 2010
George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng
Notes courtesy of Carolen, Justin Chen and Chung Wu 2



QUESTION 4.

We want to write a system to calculate the average grades of students. However,
we'd like to be able to break them down by type of student: graduate student,
undergraduate, lazy, motivated, and so on. A grade is a single number, and it is
tagged with the type of student it is associated with:

(define lazy-grade (attach-tag ‘lazy 60))

a) Write a procedure populate-records that takes a list of type-tagged student
grades and populates a table using the get and put methods discussed in class.

It should populate the table with a score total per type of student, and a number
of appearances per type of student. For example:

> (define lazyl (attach-tag ‘lazy 60))
(lazy . 60)

> (define lazy2 (attach-tag ‘lazy 70))
(lazy . 70)

> (define normall (attach-tag ‘normal 85))
(normall . 85)

> (populate-records (list lazyl lazy2 normall))
okay ;; return value unimportant

> (get ‘lazy ‘total)

130 ;; 60 + 70

> (get ‘lazy ‘appearances)

2 ;; two lazy students

b) Using the total and appearances data, write a procedure get-average that takes
in a type of student and returns their average performance. Continuing the
example from above, (get-average ‘lazy) would return 65. If the type of student
did not appear, return 0.

QUESTION 5.
Fill in the blank in the following interaction with the metacircular evaluator:

;37 M-Eval input:
if

CS61A Summer 2010
George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng
Notes courtesy of Carolen, Justin Chen and Chung Wu 3



QUESTION 6.
For each evaluator, will the following expression return a value or cause
an error? Circle VALUE or ERROR for each.
> (let ((a 3)
(b a))
(+ a 4))

VALUE ERROR The MCE
VALUE ERROR Analyzing evaluator
VALUE ERROR Lazy evaluator
For each evaluator, will the following expression return a value or cause
an error? Circle VALUE or ERROR for each.
> (let ((a 3)

(b a))

(+ a b)) ;; this line different from the one above

VALUE ERROR The MCE
VALUE ERROR Analyzing evaluator
VALUE ERROR Lazy evaluator

QUESTION 7.
Here is a transcript of a Scheme session. Fill in the blanks

> a
(12 (3 45) 6)
> b

(1 23 4 5)

> C

(1 2 (3 45) 6)

> (eg? (cddr b) (caddr a))
#T

> (eqg? (caddr c) (caddr a))
#F

> (eq? (cdaddr c) (cdddr b))
#T

> (set-car! (caddr a) 7)
okay

> (set-car! (cdaddr a) 8)
okay

> b

CS61A Summer 2010
George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng
Notes courtesy of Carolen, Justin Chen and Chung Wu



QUESTION 8.

Draw this baby, but stop drawing when you have a feel for how things will work
out in the end.

(define x 4)
(define (define-x x) (define x x) Xx)

(define (confusing x y)
(let ((z (x y)))
(set! confusing z))
(set! x 10)
(confusing))

(confusing define-x (let ((total 0))
(lambda ()
(set! total (+ total x))
(confusing))))

QUESTION 9.

In the lazy evaluator you are given:

(define (actual-value exp env)
(force-it (mc-eval exp env)))

(define (force-it obj)
(if (thunk? obj)
(actual-value (thunk-exp obj)
(thunk-env obj))
obj))

Consider this modication in all capitals:
(define (force-it obj)
(if (thunk? obj)
(MC-EVAL (thunk-exp obj)
(thunk-env obj))
obj))

Assume the following functions are typed at the lazy prompt:

(define (identity x) x)

(define (foo a b)
(+ (bar a) b))

(define (bar a) (* a a))

What is the value returned by the lazy evaluator for each of the following
expressions? If something abnormal happens, please describe.

(a) (bar 3)

(b) ((lambda (x) (* x x)) ((lambda (x) x) 5))

CS61A Summer 2010

George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng
Notes courtesy of Carolen, Justin Chen and Chung Wu



(c) (foo 6 7)

(d) (let ((a +) (b 4))
(+ b b))

(e) (identity (identity 6))

QUESTION 10.
Write a procedure useless-square that performs the squaring function correctly
the first time you call it, and thereafter only returns what it returned the

first time. For example,

> (useless-square 5)
25
> (useless-square 10)
25
> (useless-square 3)
25

QUESTION 11.
Write rules for the following query that flattens a list:

> (flatten (a (b c) d ((e))) ?what)
(flatten (a (b c) d ((e))) (a b c d e))

CS61A Summer 2010
George Wang, Jonathan Kotker, Seshadri Mahalingam, Steven Tang, Eric Tzeng
Notes courtesy of Carolen, Justin Chen and Chung Wu



