FACEBOOK GRAPH API

SESHADRI MAHALINGAM
seshadri@berkeley.edu
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

August 05, 2010

Overview of the Facebook Graph API

The Facebook Graph API is a mechanism through which developers can request information from Face-
book’s servers. You can read and write data to Facebook using URL interactions. We’ve simplified the
process in Scheme by providing you with methods to enable these interactions.

1.1 Really cool demo!

To give you a taste of what’s to come, I'm going to post something to my Facebook feed.

(make—-authorised-post-request (create-url-structure (list “me” “feed”))
(list (cons “message” “I <3 CS61A!")))

And voila, I've posted to Facebook! What did I get back? As it turns out, everything in Facebook has an ID.
You, me, your pet cat’s fan page, every comment, every status update...

I can now query the returned ID number for information about the post.

(make—-authorised-request (create-url-structure (list “<some number>"))
nil)

What else can I do with this? Let’s check my post for “likes”. ©

(make—-authorised-request (create-url-structure (list “<some number>"” “likes”))
nil)



1.2 How does this work?

Here’s a high-level overview of the process. If I type https://graph.facebook.com/704520608 into
a web browser, I can see my user account’s public information. That’s because 704520608 is my user ID.
People and pages also have the option to choose a username for themselves, and we can use this username
instead: https://graph.facebook.com/704520608

Every object in the social graph has a unique ID. We can retrieve information about an object by fetching
https://graph.facebook.com/ID, no matter the type of the object.

Objects are also connected to each other via relationships, called connections. I can get a list of my friend
connections using https://graph.facebook.com/seshness/friends.

1.3 Where’s the documentation?

http://developers.facebook.com/docs/api

This website will be your bible during the course of the project. It contains a detailed Graph API Reference
that expounds on each type of object in the social graph and lists the types of interactions it is capable of.

Each Scheme function you will need to use is commented in facebook-hooks . scm, with the inputs and
outputs specified. If you feel that something is unclear or would like better explanations for ceratin func-
tions, try the Project 4: Facebook Graph API thread on the Google group.

Our Scheme Way

2.1 Let’s get some info

At the heart of our “hooks” into Facebook’s APl is amethod (make-request request options—-alist)
that takes in a request and an association list of options and returns a familiar deep list/pair structure with
the information we’ve requested. A typical Facebook Graph API URL has the format:

https://graph.facebook.com/331218348435/attending?metadata=1l&access_token=...

where we're calling 331218348435/attending the request and metadata & access_token the op-
tions.

We can use the make-request procedure in conjunction with create-url-structure to take care of
the details involved in setting up this kind of URL and retrieving the relevant data with the following call:

(make-request (create-url-structure (list “331218348435” “attending”))
(list (cons “metadata” “1”) (cons “access_token” “...”)))

Notice how we're double-quoting our arguments here. We're interacting with Scheme at a deeper level
than we normally do, and hence mere words aren’t enough. We need strings. Strings start and end with a
double quote character and are considered atoms in STk. One important thing to note about strings is that
two strings are never eq? to each other, but they can be equal>.

Certain options in a URL can have multiple values. The fields option, for example, returns specific
properties of a requested object. A request like https://graph.facebook.com/seshness?fields=
id, name, gender will retrieve only my Facebook ID, name and gender. We can produce this kind of
request too by providing a list of values instead of a single value for an option in our association list:


https://graph.facebook.com/704520608
https://graph.facebook.com/704520608
https://graph.facebook.com/ID
https://graph.facebook.com/seshness/friends
http://developers.facebook.com/docs/api
https://graph.facebook.com/331218348435/attending?metadata=1&access_token=...
https://graph.facebook.com/seshness?fields=id,name,gender
https://graph.facebook.com/seshness?fields=id,name,gender

(make-request (create-url-structure (list “seshness”))
(list (cons “fields” (list “id” “name” “gender”))))

2.2 Post requests

Using make-request, we can retrieve information from Facebook. What about posting instead?

There is a make-post-request procedure that functions as one might expect. It takes a request, simi-
lar to that previously described, and an association list of arguments. For example, according to http:
//developers.facebook.com/docs/reference/api/post I can publish a wall post by adding the
argument “message” with a value of “om nom nom” to a request of “PROFILE_ID/feed”. The latter
can be constructed easily using create-url-structure:

(create—-url-structure (list “seshness” “feed”)) => “seshness/feed”
The former is simply a list of pairs. Combining these inputs in make-post-procedure gives us:

(make-post—-request (create-url-structure (list “seshness” “feed”))
(list (cons “message” “om nom nom”)))

Authentication

So far we’ve been glossing over a pretty big detail - security! What prevents me, or my Facebook Graph
enabled application, from posting to your wall? This is a recurring problem amongst “Web 2.0 apps”, and
many websites resolve this with an access token scheme.

3.1 The High-Level Idea

Facebook does not trust developers. At least not with usernames and passwords. No Facebook applica-
tion should require a user to hand out his/her username and password. Instead, an application asks for
permission to do specific things by going to a certain URL. A user would then log in and click the “Allow”
button to allow that application to do its specific task(s). By clicking “Allow”, the user acknowledges that
they trust the application, and the application can now receive an access token. Adding the access token as
an option to a request will authorize the request on behalf of the user, and the application will gain the
perspective of the user.

For example, suppose 1 were coding an application to check my news feed for posts from friends with
the words “om nom nom” and “Like” these posts automatically. I would have to ask my user for the
“read_stream” and “publish_stream” permissions. They would then be redirected to Facebook, and see
a fancy popup asking them if they want to allow or deny these permissions. When they click allow, the
application will be granted an access token and will get access, using this access token, to the news feed
and the ability to wall post/comment/like on posts. on behalf of the user.

These access tokens are valid for a limited amount of time, and normally will expire if the user logs out or
at the end of the allocated amount of time, whichever comes first.

3.2 Registering your application

There’s an equation for this ©:

Access Token = User Login + Permissions + Application ID


http://developers.facebook.com/docs/reference/api/post
http://developers.facebook.com/docs/reference/api/post

Remember that everything in the Graph API has an ID, including your application! You can get an Applica-
tion ID by registering your application at http://www.facebook.com/developers/ and clicking the
“+ Set up New Application” button on the right hand side of the page. Give your application a name, and
you will soon be able to view the application’s administration page. We're only interested in the application
ID from this page, but feel free to explore some of the settings.

This application ID allows Facebook to uniquely identify any single application, and remember an appli-
cation’s permissions automatically. We're now ready to get an access token and make some authorized
requests!

3.3 Authenticating in Scheme

The first procedure to familiarize yourself with is (put-application-id app-id). Like the name sug-
gests, it takes an application ID as a string, and stores it in Scheme’s default table (using put). If you want
to retrieve it, you could use the (get-application-id) procedure.

Once you've stored your application ID in Scheme, you can call (launch-auth-page). This procedure accepts
any number of permissions as arguments, so if we were coding the example application above, you would
want to make the following call:

(launch-auth-page “read_stream” “publish_stream”)

The launch-auth-page procedure opens a web browser and directs the user to Facebook. After logging in,
they are presented with the Allow /Don’t Allow prompt. Click allow, and copy the address of the page with
the word “Success” on it. This web address contains the access token that we need to give our application
using the put-access-token method:

(put—access-token “http://www.facebook.com/connect/login_success.html
#access_token=some_really_ long_gibberish&expires_in=5118")

We can retrieve the stored access token by calling (get-access-token). That’s it - we’ve now success-
fully authenticated our application!

3.4 Making authorized requests

We're authenticated - great! Now how do we use our access token?

Every authorized request we make needs to have the access token added to the list of options (or arguments
in the case of post requests). For example, to see a list of my friends now that I've authorized the application,
I'would call:

(make-request (create-url-structure (list “me” “friends”))
(list (cons “access_token” (get-access-token))))

For an application making a call with an access token, “me” in the request refers to the logged in user.

We expect that your project will consist of making many authorized requests like the one above, and
strongly recommend the use of helper procedures.


http://www.facebook.com/developers/

	Overview of the Facebook Graph API
	Really cool demo!
	How does this work?
	Where's the documentation?

	Our Scheme Way
	Let's get some info
	Post requests

	Authentication
	The High-Level Idea
	Registering your application
	Authenticating in Scheme
	Making authorized requests


