Page <1 >
By JoshuaCantrell
jic@cory.berkeley.edu

How to Draw Environment Diagrams

Environments are built from frames, which contain variables , which contain pointers to data. These frames are linkéd dogeasher
that makes drawing environment diagrams usefutdoceptuking how they work. The steps used to build environments all begin with evaluating
expressions in a frame. The cutrt|ame being worked on can be isolated from other frames when dealing with evaluation when you don't search for
variables to evaluate.

How to bind variablesnamesin a frame:

If define is evaluated then the value is said to be Hdan
the current frame, which I'll signify by CF. For example CF—> CE—
| evaluated the expression “(define x 5)” then this is wh
would happen.

Before After

How to change the value of an already bound variablein a frame:
In the case where a variable’s name is already defined ar
bound, then we use tlset! command instead olefine.
Whenset! is evaluated and cannot find a variable with t
given namen the current environmerit returns an error,
but when it does find the given variable name, it redirec]
the name’s pointer to the value giv&or example, if |
evalutedthe expression “(set! x 24)” then this is what Before After
would happen.

CF—=| x5 CF—| x. 24

When alambdaisevaluated in an environment:
The evaluation ofambda creates a procedure. It is
important to note that the body ofambda is not evaluateg CF— CF—
when thdambda is evatiated. The body is only evaluate|
when the resulting procedure is evaluated. The proced
is drawn as two circles beside each other, the left one
pointing at the arguments and body of the resultant

procedure and the right one pointing at the current fram| parameters: n
lambda is evaluated within. Note that a peaitire does no body: (* n n)
hawe to be bound to a variable name to exist and be use

To link the procedure to a variable name,diéne or set! Before After

procedures can be usellor example, if | evaluated the
expression “(lambda (n) (* n n))” then this would happen.

When a procedureisevaluated in an environment:

When a procedure is evaluated, with or without arguments, it creates a new frame, and its evaluation is started by tledreanfingithe current
frame. The new frame has a pointer to the frame the procedure points to, and the parameter names are bound in thednaahgewitheth
procedure was called with. When the procedure is done being evaluated, the current frame points to the same framehiefmatine forocedure
was evaluated. Let's consider evaluating the expression “((lambda (n) (* n n)) 3)". Notice how fasthitie is evaluated and then the procedure is
evaluated afterwardsyou can't create a frame before having a procedure to create it.

CF— CF— CF—
1 1
CF—=n:3 n: 3
parameters: n
body: (* n n) parameters: n parameters: n
body: (* n n) body: (* n n)
Step 0 Step 1 Step 2 Step 3
evaluate lambda evaluate procedure result returns 9

How to find values given variable names:

Variables are found by first searching the current frame for the given variable nam¢ | p: p ad c: 6
that fails, then the search continues by going to the frame pointed to by the currenf | g: 7

and searching there. Sitill failing, the search will continue following the pointer of fr

to other frames until the firsiccuranceof the variable name, and then the variable is)))
found. Given the string of frames below, the variable ‘a’ is unbound in frame F3, b F1 F2 F3
bound h frames F1 and F2. If the variable ‘a’ was sought for in F3, it would not fin

and move on to F2 where it would find it. Notice that F2 and F3 cannot reach the
variable ‘a’ in F1 because it is bound in a frame before F1. This series of frames is referrecetwiasranent.

Page < >
By Joshu&Cantrell
jic@cory.berkeley.edu

Following the execution of Scheme commands using an environment diagram:

An important skill is being able favision these environment diagrams in your mind when working with Scheme. These can be great aids to you
when debugging a complex program or you neetbtifier someone else’s Scheme code. I'll go over a simple, but complete example of the execution
of same Scheme commands. One thing to notice is that frames are never removed in Scheme conceptually, but linger aratyndToeetsh

interpreter makes a list of all data, frames, and procedures that are currently being pointed to by siseetinstill ha the possibility of being

used, then removes everything that isn’t eekithis is called garbage collecting). I'll not do any garbage collecting in this example just to show you
what the conceptual picture of a giing environment looks likeSome of the steps that just return to the Global environment are left out to save
space.

> (define x (cons ‘a ‘b))
> (define (fix-x) (set! x fixed)) Globaly Global 3
> (define (mak e-machine foot pedal) CF— CF—|x w
(set! x ‘break)
(let ((a ‘an-a) ab
(x ‘an-x))
(lambda (msg) St ep l
(cond ((eq? msg ‘foot) foot) Stepo (define x (cons 'a ‘b))
((eq? msg ‘pedal) ped al)
((eq? msg ‘fix)
(define x ‘not-x)
fixx)) Global ¥
(else (cons a x))) CF—|x: w
> (define bike (make-machine ‘shoe ‘gear))
> (bike ‘foot) ab
> (bike ‘fix) parameters:
> (bike ‘foo) body: (set! x ‘fixed)
Step2
(define (fix-x) (set! x ‘fixed))
Global 7 Global 3
CF—|x :
e gnn
ab ab parameters:
X=X parameters: oy o
fiex body: (set! x 'fixed) fixx: body: (set! x 'fixed)

make-machine: —_|

(define fix-x Il) parameters: foot, pedal

T body: (set! x ‘break) ...
Global 3§ CF—{foot: shoe
CF— [y w pedal: gear
ab
fix-x: parameters: St ep6
- (cotl x*
body: (set! x fixed) (define bike (make-machine 'shoe 'gear))
parameters: foot, pedal Global ¥
body: (set! x 'break) ... X: break
- Step4 " T arameters:
(define (make-machine ...) ...) fix-x: Eo diy (eetl xoed)
make-machine: —_|
Global ¥
CF— |y w parameters: foot, pedal
b T body: (set! x ‘break) ...
a
fix-x: parameters: CF—{fo0t: shoe
. body: (set! x 'fixed) pedal: gear
make-machine: —_|
parameters: foot, pedal Step7
body: (set! x 'break) ... (set! x 'break)
(define make-machinel‘l‘l) Global ¥
x: break
fix-x: parameters:

body: (set! x 'fixed)
make-machine: —_|

parameters: foot, pedal

T body: (set! x ‘break) ...
CF—Tfoot: shoe
pedal: gear
parameters: a, x

body: (lambda (msg) ...)

Step8

(let (@ 'an-a) ...) ...)

By Joshu&Cantrell
jic@cory.berkeley.edu

Page <3 >

Global 3
X: break

fix-x:
make-machine: —_|

1

foot: shoe
pedal: gear

1

CF—=la an-a

parameters:
body: (set! x 'fixed)

l

parameters: foot, pedal
body: (set! x ‘break) ...

parameters: a, X
body: (lambda (msg) ...)

X: an-x
|LStepQ
(07 'an-a 'an-x)
Global 3,
x: break (_—@b
fix-x: parameters:

make-machine: —_|

1

foot: shoe
pedal: gear

1

CF—la: an-a
X: an-x

body: (set! x 'fixed)

g

parameters: foot, pedal
body: (set! x ‘break) ...

3

parameters: a, X
body: (lambda (msg) ...)

3

parameters: msg
body: (cond ...)

Global 3
X: break

fix-x:

foot: shoe
pedal: gear

—ah

parameters:
body: (set! x 'fixed)

make-machine: —L‘@
bike: —|

parameters: foot, pedal

17 b

— oo

parameters: a, x
T body: (lambda (msg) ...)

dy: (set! x 'break) ...

Stepl0
(lambda (msg) (cond ...))
Global 3
CF= Iy break (_—@b
T parameters:
fix-x: body: (set! x 'fixed)
make-machine: —_|
bike: —|
parameters: foot, pedal
— T body: (set! x ‘break) ...
foot: shoe
pedal: gear
parameters: a, X
T body: (lambda (msg) ...)
a. an-a
X an-x
parameters: msg
body: (cond ...)

a. an-a

X an-x
parameters: msg
body: (cond ...)

CF—| msg: foot
Stepl2
(bike ‘foot) —> shoe

Global 3

x: break m

ﬁX_X. parameters:

foot: shoe
pedal: gear

body: (set! x 'fixed)

make-machine: —_|
bike: —| @ é

—IT

parameters: foot, pedal
body: (set! x ‘break) ...

B

parameters: a, X
1‘ body: (lambda (msg) ...)

Stepll

(define bike [1J)

a: an-a
X: an-x
parameters: msg
L body: (cond ...)
CF—| -
msg: fix msg: foot
Stepl3
(bike *fix)
Global ¥
x: fixed m
VRV parameters:
fix-x: body: (set! x 'fixed)
make-machine: —_|
bike:
parameters: foot, pedal
— T body: (set! x ‘break) ...
foot: shoe
pedal: gear
parameters: a, x
1‘ body: (lambda (msg) ...)
a:an-a
X: an-x
parameters: msg
4 body: (cond ...)
CF= msg: fix msg: foot
X: not-x
Stepl5

(define x 'not-x)

By Joshu&Cantrell
jic@cory.berkeley.edu
Global ¥
x: break m
] . parameters:
’[‘ L fix-x: body: (set! x 'fixed)
CF make-machine: —_|
bike: —|
parameters: foot, pedal
— T body: (set! x ‘break) ...
foot: shoe
pedal: gear
parameters: a, x
1‘ body: (lambda (msg) ...)
a:an-a
X: an-x
parameters: msg
1‘ body: (cond ...)
msg: fix msg: foot
Stepl4d
(fix-x)
Global ¥
x: fixed @@
] . parameters:
’[‘ L fix-x: body: (set! x 'fixed)
CF make-machine: —_|
bike:
parameters: foot, pedal
— T body: (set! x ‘break) ...
foot: shoe
pedal: gear
parameters: a, x
1‘ body: (lambda (msg) ...)
a:an-a
X: an-x
parameters: msg
L body: (cond ...)
msg: fix msg: foot
X: not-x
Stepl6
(set! x 'fixed)
Global ¥V
x: fixed @@
] . parameters:
L fix-x: . body: (set! x 'fixed)
msg: foo make-machine: —_|
bike: —|
parameters: foot, pedal
1‘ — T body: (set! x ‘break) ...
CF foot: shoe
pedal: gear
parameters: a, x
T body: (lambda (msg) ...)
a: an-a
X: an-x
parameters: msg
L body: (cond ...)
msg: fix msg: foot
X: not-x
Stepl7
(bike 'foo)—>(an-a . an-x)

Page <4 >

