
How to Draw Environment Diagrams
Environments are built from frames, which contain variables , which contain pointers to data. These frames are linked together in a way

that makes drawing environment diagrams useful for conceptulizing how they work. The steps used to build environments all begin with evaluating
expressions in a frame. The current frame being worked on can be isolated from other frames when dealing with evaluation when you don’t search for
variables to evaluate.

How to bind variables names in a frame:
If define is evaluated then the value is said to be bound to
the current frame, which I’ll signify by CF. For example, if
I evaluated the expression “(define x 5)” then this is what
would happen.

How to change the value of an already bound variable in a frame:
In the case where a variable’s name is already defined or
bound, then we use the set! command instead of define.
When set! is evaluated and cannot find a variable with the
given name in the current environment, it returns an error,
but when it does find the given variable name, it redirects
the name’s pointer to the value given. For example, if I
evaluted the expression “(set! x 24)” then this is what
would happen.

When a lambda is evaluated in an environment:
The evaluation of lambda creates a procedure. It is
important to note that the body of a lambda is not evaluated
when the lambda is evaluated. The body is only evaluated
when the resulting procedure is evaluated. The procedure
is drawn as two circles beside each other, the left one
pointing at the arguments and body of the resultant
procedure and the right one pointing at the current frame the
lambda is evaluated within. Note that a procedure does not
have to be bound to a variable name to exist and be used.
To link the procedure to a variable name, the define or set!
procedures can be used. For example, if I evaluated the
expression “(lambda (n) (* n n))” then this would happen.

When a procedure is evaluated in an environment:
When a procedure is evaluated, with or without arguments, it creates a new frame, and its evaluation is started by this new frame becoming the current
frame. The new frame has a pointer to the frame the procedure points to, and the parameter names are bound in the frame with the values the
procedure was called with. When the procedure is done being evaluated, the current frame points to the same frame it pointed to before the procedure
was evaluated. Let’s consider evaluating the expression “((lambda (n) (* n n)) 3)”. Notice how first the lambda is evaluated and then the procedure is
evaluated afterwards. You can’t create a frame before having a procedure to create it.

How to find values given variable names:
Variables are found by first searching the current frame for the given variable name. If
that fails, then the search continues by going to the frame pointed to by the current frame,
and searching there. Still failing, the search will continue following the pointer of frames
to other frames until the first occurance of the variable name, and then the variable is
found. Given the string of frames below, the variable ‘a’ is unbound in frame F3, but
bound in frames F1 and F2. If the variable ‘a’ was sought for in F3, it would not find it,
and move on to F2 where it would find it. Notice that F2 and F3 cannot reach the
variable ‘a’ in F1 because it is bound in a frame before F1. This series of frames is referred to as an environment.

Page < 1 >
By Joshua Cantrell
jjc@cory.berkeley.edu

CF

Step 1

parameters: n
body: (* n n)

evaluate lambda

CF

Step 0

CF

Step 2

parameters: n
body: (* n n)

n: 3

evaluate procedure

CF

Step 3

parameters: n
body: (* n n)

n: 3

result returns 9

F1 F2 F3

b: b
a: 7

a: d c: 6

CF

After

x: 5CF

Before

CF

Before

x:5 CF

After

x: 24CF

Before

x: 5

CF

Before

CF

After

parameters: n
body: (* n n)

Following the execution of Scheme commands using an environment diagram:
An important skill is being able to invision these environment diagrams in your mind when working with Scheme. These can be great aids to you
when debugging a complex program or you need to decifier someone else’s Scheme code. I’ll go over a simple, but complete example of the execution
of some Scheme commands. One thing to notice is that frames are never removed in Scheme conceptually, but linger around for eternity. The real
interpreter makes a list of all data, frames, and procedures that are currently being pointed to by something else and still has the possibility of being
used, then removes everything that isn’t needed (this is called garbage collecting). I’ll not do any garbage collecting in this example just to show you
what the conceptual picture of a growing environment looks like. Some of the steps that just return to the Global environment are left out to save
space.
> (define x (cons ‘a ‘b))
> (define (fix-x) (set! x ‘fixed))
> (define (mak e-machine foot pedal)
 (set! x ‘break)
 (let ((a ‘an-a)
 (x ‘an-x))
 (lambda (msg)
 (cond ((eq? msg ‘foot) foot)
 ((eq? msg ‘pedal) ped al)
 ((eq? msg ‘fix)
 (define x ‘not-x)
 (fix-x))
 (else (cons a x))))))
> (define bike (make-machine ‘shoe ‘gear))
> (bike ‘foot)
> (bike ‘fix)
> (bike ‘foo)

Page < 2 >
By Joshua Cantrell
jjc@cory.berkeley.edu

CF

Step0

Global
CF

Step1

Global
x:

a b

(define x (cons 'a 'b))

CF

Step2

Global
x:

a b

(define (fix-x) (set! x 'fixed))

parameters:
body: (set! x 'fixed)

CF

Step4

Global
x:

a b

(define (make-machine ...) ...)

parameters:
body: (set! x 'fixed)

fix-x:

parameters: foot, pedal
body: (set! x 'break) ...

CF

Step6

Global
x:

a b

(define bike (make-machine 'shoe 'gear))

parameters:
body: (set! x 'fixed)

fix-x:

parameters: foot, pedal
body: (set! x 'break) ...

make-machine:

foot: shoe
pedal: gear

CF

Step7

Global
x: break

(set! x 'break)

parameters:
body: (set! x 'fixed)

fix-x:

parameters: foot, pedal
body: (set! x 'break) ...

make-machine:

foot: shoe
pedal: gear

CF

Step8

Global
x: break

(let ((a 'an-a) ...) ...)

parameters:
body: (set! x 'fixed)

fix-x:

parameters: foot, pedal
body: (set! x 'break) ...

make-machine:

foot: shoe
pedal: gear

parameters: a, x
body: (lambda (msg) ...)

CF

Step3

Global
x:

a b

(define fix-x)

parameters:
body: (set! x 'fixed)

fix-x:

CF

Step5

Global
x:

a b

(define make-machine)

parameters:
body: (set! x 'fixed)

fix-x:

parameters: foot, pedal
body: (set! x 'break) ...

make-machine:

Page < 3 >
By Joshua Cantrell
jjc@cory.berkeley.edu

CF

Step11

Global
x: break

(define bike)

parameters:
body: (set! x 'fixed)

fix-x:

parameters: foot, pedal
body: (set! x 'break) ...

make-machine:

foot: shoe
pedal: gear

parameters: a, x
body: (lambda (msg) ...)

a: an-a
x: an-x

parameters: msg
body: (cond ...)

bike:

CF

Step12

Global
x: break

(bike 'foot) shoe

parameters:
body: (set! x 'fixed)

fix-x:

parameters: foot, pedal
body: (set! x 'break) ...

make-machine:

foot: shoe
pedal: gear

parameters: a, x
body: (lambda (msg) ...)

a: an-a
x: an-x

parameters: msg
body: (cond ...)

bike:

msg: foot

CF

Step13

Global
x: break

(bike 'fix)

parameters:
body: (set! x 'fixed)

fix-x:

parameters: foot, pedal
body: (set! x 'break) ...

make-machine:

foot: shoe
pedal: gear

parameters: a, x
body: (lambda (msg) ...)

a: an-a
x: an-x

parameters: msg
body: (cond ...)

bike:

msg: footmsg: fix

CF

Step10

Global
x: break

(lambda (msg) (cond ...))

parameters:
body: (set! x 'fixed)

fix-x:

parameters: foot, pedal
body: (set! x 'break) ...

make-machine:

foot: shoe
pedal: gear

parameters: a, x
body: (lambda (msg) ...)

a: an-a
x: an-x

parameters: msg
body: (cond ...)

CF

Step9

Global
x: break

('an-a 'an-x)

parameters:
body: (set! x 'fixed)

fix-x:

parameters: foot, pedal
body: (set! x 'break) ...

make-machine:

foot: shoe
pedal: gear

parameters: a, x
body: (lambda (msg) ...)

a: an-a
x: an-x

CF

Step15

Global
x: fixed

(define x 'not-x)

parameters:
body: (set! x 'fixed)

fix-x:

parameters: foot, pedal
body: (set! x 'break) ...

make-machine:

foot: shoe
pedal: gear

parameters: a, x
body: (lambda (msg) ...)

a: an-a
x: an-x

parameters: msg
body: (cond ...)

bike:

msg: footmsg: fix
x: not-x

Page < 4 >
By Joshua Cantrell
jjc@cory.berkeley.edu

Step17

Global
x: fixed

(bike 'foo) (an-a . an-x)

parameters:
body: (set! x 'fixed)

fix-x:

parameters: foot, pedal
body: (set! x 'break) ...

make-machine:

foot: shoe
pedal: gear

parameters: a, x
body: (lambda (msg) ...)

a: an-a
x: an-x

parameters: msg
body: (cond ...)

bike:

msg: footmsg: fix
x: not-x

CF

msg: foo

CF

Step16

Global
x: fixed

(set! x 'fixed)

parameters:
body: (set! x 'fixed)

fix-x:

parameters: foot, pedal
body: (set! x 'break) ...

make-machine:

foot: shoe
pedal: gear

parameters: a, x
body: (lambda (msg) ...)

a: an-a
x: an-x

parameters: msg
body: (cond ...)

bike:

msg: footmsg: fix
x: not-x

CF

Step14

Global
x: break

(fix-x)

parameters:
body: (set! x 'fixed)

fix-x:

parameters: foot, pedal
body: (set! x 'break) ...

make-machine:

foot: shoe
pedal: gear

parameters: a, x
body: (lambda (msg) ...)

a: an-a
x: an-x

parameters: msg
body: (cond ...)

bike:

msg: footmsg: fix

